Skip to contents

These functions determine which items in a vector can be considered (the start of) a new episode, based on the argument episode_days. This can be used to determine clinical episodes for any epidemiological analysis. The get_episode() function returns the index number of the episode per group, while the is_new_episode() function returns values TRUE/FALSE to indicate whether an item in a vector is the start of a new episode.

Usage

get_episode(x, episode_days, ...)

is_new_episode(x, episode_days, ...)

Arguments

x

vector of dates (class Date or POSIXt), will be sorted internally to determine episodes

episode_days

required episode length in days, can also be less than a day or Inf, see Details

...

ignored, only in place to allow future extensions

Value

  • get_episode(): a double vector

  • is_new_episode(): a logical vector

Details

Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least episode_days days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least episode_days days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.

The first_isolate() function is a wrapper around the is_new_episode() function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.

The dplyr package is not required for these functions to work, but these functions do support variable grouping and work conveniently inside dplyr verbs such as filter(), mutate() and summarise().

See also

Examples

# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 200), ]

get_episode(df$date, episode_days = 60) # indices
#>   [1] 11 63 45 25 27  5 60 43 43 48 65 20 11 34  1 35 24 32 57 55 12 31 41 31  2
#>  [26]  5  3 19 45 49 66 55 20 49  1  4  3 16 37 35 25 61 63  1 37 36 20 22  3 32
#>  [51] 64 11 12 40 61 16 15 21 26 57  2 44  1 49 35 21 29  7 17 15 13 48 10 20 48
#>  [76] 29 45 14 40 59 65 26 52 49  7 33 29 14  9 17 46 51 18 65  3 38  6 12 11 61
#> [101] 52  5 64 57 22 26 58  7 21 30 16  8 54 33 19 11 41 10 59 34 64 38 64 57 20
#> [126] 51 14 18 54  9  6 23 53 44 21 36 63 48 62 19  7 36  7 11 49 58 34 34 37 47
#> [151] 31 45 22 24  4 58 54 22 22 56 14 14 62 32 23 63  1  8 61 41 28 11 30 26 43
#> [176] 39 14 42 49 25 49 52 43 18 11 38 55 11 56 59 54 15  9 48 60 50  4  7 18 57
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#>   [1] FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE
#>  [13]  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE
#>  [25] FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE
#>  [37] FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
#>  [49] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
#>  [61]  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE
#>  [73] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE
#>  [85] FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE
#>  [97]  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE
#> [109] FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
#> [121] FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE
#> [133]  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE
#> [145] FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE
#> [157] FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE
#> [169]  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE
#> [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
#> [193] FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE

# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 4 × 46
#>   date       patient   age gender ward      mo           PEN   OXA   FLC   AMX  
#>   <date>     <chr>   <dbl> <chr>  <chr>     <mo>         <rsi> <rsi> <rsi> <rsi>
#> 1 2002-05-16 E52286     47 M      Clinical  B_STPHY_AURS R     NA    S     R    
#> 2 2002-05-22 F35553     50 M      ICU       B_STPHY_EPDR R     NA    R     R    
#> 3 2002-05-16 D25302     65 F      ICU       B_STRPT_ANGN S     NA    NA    S    
#> 4 2002-06-07 710157     76 M      Outpatie… B_STPHY_CONS S     NA    S     NA   
#> # … with 36 more variables: AMC <rsi>, AMP <rsi>, TZP <rsi>, CZO <rsi>,
#> #   FEP <rsi>, CXM <rsi>, FOX <rsi>, CTX <rsi>, CAZ <rsi>, CRO <rsi>,
#> #   GEN <rsi>, TOB <rsi>, AMK <rsi>, KAN <rsi>, TMP <rsi>, SXT <rsi>,
#> #   NIT <rsi>, FOS <rsi>, LNZ <rsi>, CIP <rsi>, MFX <rsi>, VAN <rsi>,
#> #   TEC <rsi>, TCY <rsi>, TGC <rsi>, DOX <rsi>, ERY <rsi>, CLI <rsi>,
#> #   AZM <rsi>, IPM <rsi>, MEM <rsi>, MTR <rsi>, CHL <rsi>, COL <rsi>,
#> #   MUP <rsi>, RIF <rsi>

# the functions also work for less than a day, e.g. to include one per hour:
get_episode(c(
  Sys.time(),
  Sys.time() + 60 * 60
),
episode_days = 1 / 24
)
#> [1] 1 2

# \donttest{
if (require("dplyr")) {
  # is_new_episode() can also be used in dplyr verbs to determine patient
  # episodes based on any (combination of) grouping variables:
  df %>%
    mutate(condition = sample(
      x = c("A", "B", "C"),
      size = 200,
      replace = TRUE
    )) %>%
    group_by(condition) %>%
    mutate(new_episode = is_new_episode(date, 365)) %>%
    select(patient, date, condition, new_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   condition [3]
#>    patient date       condition new_episode
#>    <chr>   <date>     <chr>     <lgl>      
#>  1 399817  2004-04-15 C         FALSE      
#>  2 C95287  2017-03-14 B         FALSE      
#>  3 A95779  2012-05-18 C         TRUE       
#>  4 636118  2007-06-17 A         FALSE      
#>  5 921720  2007-11-02 C         FALSE      
#>  6 600057  2002-11-28 A         FALSE      
#>  7 D10538  2016-08-13 A         FALSE      
#>  8 146120  2011-09-23 C         FALSE      
#>  9 685406  2011-09-27 B         TRUE       
#> 10 C01360  2013-07-27 B         FALSE      
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward, patient) %>%
    transmute(date,
      patient,
      new_index = get_episode(date, 60),
      new_logical = is_new_episode(date, 60)
    )
}
#> # A tibble: 200 × 5
#> # Groups:   ward, patient [185]
#>    ward       date       patient new_index new_logical
#>    <chr>      <date>     <chr>       <dbl> <lgl>      
#>  1 Clinical   2004-04-15 399817          1 TRUE       
#>  2 ICU        2017-03-14 C95287          1 TRUE       
#>  3 Clinical   2012-05-18 A95779          1 TRUE       
#>  4 Clinical   2007-06-17 636118          1 TRUE       
#>  5 Clinical   2007-11-02 921720          1 TRUE       
#>  6 Outpatient 2002-11-28 600057          1 TRUE       
#>  7 ICU        2016-08-13 D10538          1 TRUE       
#>  8 Clinical   2011-09-23 146120          1 TRUE       
#>  9 Clinical   2011-09-27 685406          1 TRUE       
#> 10 Clinical   2013-07-27 C01360          1 TRUE       
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward) %>%
    summarise(
      n_patients = n_distinct(patient),
      n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
      n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
      n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
    )
}
#> # A tibble: 3 × 5
#>   ward       n_patients n_episodes_365 n_episodes_60 n_episodes_30
#>   <chr>           <int>          <int>         <int>         <int>
#> 1 Clinical          104             14            53            67
#> 2 ICU                65             12            40            46
#> 3 Outpatient         16              9            16            16
if (require("dplyr")) {

  # grouping on patients and microorganisms leads to the same
  # results as first_isolate() when using 'episode-based':
  x <- df %>%
    filter_first_isolate(
      include_unknown = TRUE,
      method = "episode-based"
    )

  y <- df %>%
    group_by(patient, mo) %>%
    filter(is_new_episode(date, 365)) %>%
    ungroup()

  identical(x, y)
}
#> Including isolates from ICU.
#> [1] TRUE
if (require("dplyr")) {

  # but is_new_episode() has a lot more flexibility than first_isolate(),
  # since you can now group on anything that seems relevant:
  df %>%
    group_by(patient, mo, ward) %>%
    mutate(flag_episode = is_new_episode(date, 365)) %>%
    select(group_vars(.), flag_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   patient, mo, ward [193]
#>    patient mo           ward       flag_episode
#>    <chr>   <mo>         <chr>      <lgl>       
#>  1 399817  B_CTRBC_FRND Clinical   TRUE        
#>  2 C95287  B_STPHY_HMNS ICU        TRUE        
#>  3 A95779  B_STPHY_AURS Clinical   TRUE        
#>  4 636118  B_MRGNL_MRGN Clinical   TRUE        
#>  5 921720  B_STPHY_CONS Clinical   TRUE        
#>  6 600057  B_STPHY_AURS Outpatient TRUE        
#>  7 D10538  B_ESCHR_COLI ICU        TRUE        
#>  8 146120  B_STPHY_AURS Clinical   TRUE        
#>  9 685406  B_STRPT_PNMN Clinical   TRUE        
#> 10 C01360  B_STPHY_CONS Clinical   TRUE        
#> # … with 190 more rows
# }