Skip to contents

These functions determine which items in a vector can be considered (the start of) a new episode, based on the argument episode_days. This can be used to determine clinical episodes for any epidemiological analysis. The get_episode() function returns the index number of the episode per group, while the is_new_episode() function returns values TRUE/FALSE to indicate whether an item in a vector is the start of a new episode.

Usage

get_episode(x, episode_days, ...)

is_new_episode(x, episode_days, ...)

Arguments

x

vector of dates (class Date or POSIXt), will be sorted internally to determine episodes

episode_days

required episode length in days, can also be less than a day or Inf, see Details

...

ignored, only in place to allow future extensions

Value

  • get_episode(): a double vector

  • is_new_episode(): a logical vector

Details

Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least episode_days days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least episode_days days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.

The first_isolate() function is a wrapper around the is_new_episode() function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.

The dplyr package is not required for these functions to work, but these functions do support variable grouping and work conveniently inside dplyr verbs such as filter(), mutate() and summarise().

See also

Examples

# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 200), ]

get_episode(df$date, episode_days = 60) # indices
#>   [1] 31  3 57 44  3 12 59  6  2 52 18 35 56 59 21 41 52  6 51 45 16  4  7 51 56
#>  [26] 20 50  9 59 41  5  5 27  7  8 43 44 16 57  1 60 33 23  7 40 63 18 59 32 39
#>  [51] 42 31  7  6 60  2 48 58 41 40 12 59 55 24 40 17 60 37 16  9 47 56 51 17  9
#>  [76] 15 26 14 40 38 14  9 59 59 15  6 11 18 36 18 55 60  3 40 59 12 53 36 43 44
#> [101] 34 21 10 31 44 33 39 12 44 55 11 34 46 20  9 33 52 30 29 59  3 26 21 36 40
#> [126] 43 36 58  9 52 17 61  6 48 22 28  8 41 52 27 45 46 63 19 58 46 44 27 13  9
#> [151] 25 22 54 23 36 50  5 14 39 56 57 26 60 36 30 62 16 44 49  4  5  8 34 47 16
#> [176] 27 16 52 52 49 26 23 59 29 29 31 62 12 30 62 10 28 57 15 37 26 20 31 50  1
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#>   [1] FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE
#>  [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
#>  [25]  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE
#>  [37] FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE
#>  [49]  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE
#>  [61] FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE
#>  [73]  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
#>  [85]  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
#>  [97]  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
#> [109] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
#> [121] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE
#> [133]  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE
#> [145]  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE
#> [157] FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE
#> [169]  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE
#> [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE
#> [193] FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE

# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 4 × 46
#>   date       patient   age gender ward     mo           PEN   OXA   FLC   AMX  
#>   <date>     <chr>   <dbl> <chr>  <chr>    <mo>         <rsi> <rsi> <rsi> <rsi>
#> 1 2002-11-16 762305     87 F      Clinical B_BCTRD_FRGL R     NA    NA    R    
#> 2 2002-10-14 FCC668     54 F      ICU      B_ACNTB      R     NA    NA    NA   
#> 3 2002-10-20 F35553     51 M      ICU      B_STPHY_AURS S     NA    S     NA   
#> 4 2002-11-21 450741     77 F      ICU      B_STPHY_EPDR R     NA    S     NA   
#> # … with 36 more variables: AMC <rsi>, AMP <rsi>, TZP <rsi>, CZO <rsi>,
#> #   FEP <rsi>, CXM <rsi>, FOX <rsi>, CTX <rsi>, CAZ <rsi>, CRO <rsi>,
#> #   GEN <rsi>, TOB <rsi>, AMK <rsi>, KAN <rsi>, TMP <rsi>, SXT <rsi>,
#> #   NIT <rsi>, FOS <rsi>, LNZ <rsi>, CIP <rsi>, MFX <rsi>, VAN <rsi>,
#> #   TEC <rsi>, TCY <rsi>, TGC <rsi>, DOX <rsi>, ERY <rsi>, CLI <rsi>,
#> #   AZM <rsi>, IPM <rsi>, MEM <rsi>, MTR <rsi>, CHL <rsi>, COL <rsi>,
#> #   MUP <rsi>, RIF <rsi>

# the functions also work for less than a day, e.g. to include one per hour:
get_episode(c(
  Sys.time(),
  Sys.time() + 60 * 60
),
episode_days = 1 / 24
)
#> [1] 1 2

# \donttest{
if (require("dplyr")) {
  # is_new_episode() can also be used in dplyr verbs to determine patient
  # episodes based on any (combination of) grouping variables:
  df %>%
    mutate(condition = sample(
      x = c("A", "B", "C"),
      size = 200,
      replace = TRUE
    )) %>%
    group_by(condition) %>%
    mutate(new_episode = is_new_episode(date, 365)) %>%
    select(patient, date, condition, new_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   condition [3]
#>    patient date       condition new_episode
#>    <chr>   <date>     <chr>     <lgl>      
#>  1 291882  2010-05-01 C         FALSE      
#>  2 762305  2002-11-16 A         FALSE      
#>  3 644292  2016-10-26 C         FALSE      
#>  4 B86399  2013-08-13 B         TRUE       
#>  5 FCC668  2002-10-14 C         FALSE      
#>  6 F41D7B  2005-01-12 A         FALSE      
#>  7 CD8C33  2017-02-25 C         TRUE       
#>  8 A59636  2003-07-24 A         FALSE      
#>  9 E52286  2002-05-16 A         TRUE       
#> 10 B6F683  2015-11-15 A         FALSE      
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward, patient) %>%
    transmute(date,
      patient,
      new_index = get_episode(date, 60),
      new_logical = is_new_episode(date, 60)
    )
}
#> # A tibble: 200 × 5
#> # Groups:   ward, patient [183]
#>    ward       date       patient new_index new_logical
#>    <chr>      <date>     <chr>       <dbl> <lgl>      
#>  1 Clinical   2010-05-01 291882          1 TRUE       
#>  2 Clinical   2002-11-16 762305          1 TRUE       
#>  3 ICU        2016-10-26 644292          1 TRUE       
#>  4 ICU        2013-08-13 B86399          1 TRUE       
#>  5 ICU        2002-10-14 FCC668          1 TRUE       
#>  6 ICU        2005-01-12 F41D7B          1 TRUE       
#>  7 Clinical   2017-02-25 CD8C33          1 TRUE       
#>  8 Clinical   2003-07-24 A59636          1 TRUE       
#>  9 Clinical   2002-05-16 E52286          1 TRUE       
#> 10 Outpatient 2015-11-15 B6F683          1 TRUE       
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward) %>%
    summarise(
      n_patients = n_distinct(patient),
      n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
      n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
      n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
    )
}
#> # A tibble: 3 × 5
#>   ward       n_patients n_episodes_365 n_episodes_60 n_episodes_30
#>   <chr>           <int>          <int>         <int>         <int>
#> 1 Clinical          102             13            47            71
#> 2 ICU                65             13            40            48
#> 3 Outpatient         16              8            14            15
if (require("dplyr")) {

  # grouping on patients and microorganisms leads to the same
  # results as first_isolate() when using 'episode-based':
  x <- df %>%
    filter_first_isolate(
      include_unknown = TRUE,
      method = "episode-based"
    )

  y <- df %>%
    group_by(patient, mo) %>%
    filter(is_new_episode(date, 365)) %>%
    ungroup()

  identical(x, y)
}
#> Including isolates from ICU.
#> [1] FALSE
if (require("dplyr")) {

  # but is_new_episode() has a lot more flexibility than first_isolate(),
  # since you can now group on anything that seems relevant:
  df %>%
    group_by(patient, mo, ward) %>%
    mutate(flag_episode = is_new_episode(date, 365)) %>%
    select(group_vars(.), flag_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   patient, mo, ward [193]
#>    patient mo           ward       flag_episode
#>    <chr>   <mo>         <chr>      <lgl>       
#>  1 291882  B_STPHY_EPDR Clinical   TRUE        
#>  2 762305  B_BCTRD_FRGL Clinical   TRUE        
#>  3 644292  B_STPHY_AURS ICU        TRUE        
#>  4 B86399  B_LISTR_MNCY ICU        TRUE        
#>  5 FCC668  B_ACNTB      ICU        TRUE        
#>  6 F41D7B  B_STRPT_PNMN ICU        TRUE        
#>  7 CD8C33  B_STPHY_HMNS Clinical   TRUE        
#>  8 A59636  B_STPHY_AURS Clinical   TRUE        
#>  9 E52286  B_STPHY_AURS Clinical   TRUE        
#> 10 B6F683  B_STPHY_HMNS Outpatient TRUE        
#> # … with 190 more rows
# }