Join the data set microorganisms easily to an existing table or character vector.
inner_join_microorganisms(x, by = NULL, suffix = c("2", ""), ...) left_join_microorganisms(x, by = NULL, suffix = c("2", ""), ...) right_join_microorganisms(x, by = NULL, suffix = c("2", ""), ...) full_join_microorganisms(x, by = NULL, suffix = c("2", ""), ...) semi_join_microorganisms(x, by = NULL, ...) anti_join_microorganisms(x, by = NULL, ...)
x | existing table to join, or character vector |
---|---|
by | a variable to join by - if left empty will search for a column with class |
suffix | if there are non-joined duplicate variables in |
... | other parameters to pass on to |
Note: As opposed to the dplyr::join()
functions of dplyr
, character
vectors are supported and at default existing columns will get a suffix "2"
and the newly joined columns will not get a suffix. See dplyr::join()
for more information.
The lifecycle of this function is stable. In a stable function, we are largely happy with the unlying code, and major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; we will avoid removing arguments or changing the meaning of existing arguments.
If the unlying code needs breaking changes, they will occur gradually. To begin with, the function or argument will be deprecated; it will continue to work but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
On our website https://msberends.gitlab.io/AMR you can find a comprehensive tutorial about how to conduct AMR analysis, the complete documentation of all functions (which reads a lot easier than here in R) and an example analysis using WHONET data.
left_join_microorganisms(as.mo("K. pneumoniae")) left_join_microorganisms("B_KLBSL_PNE") library(dplyr) example_isolates %>% left_join_microorganisms() df <- data.frame(date = seq(from = as.Date("2018-01-01"), to = as.Date("2018-01-07"), by = 1), bacteria = as.mo(c("S. aureus", "MRSA", "MSSA", "STAAUR", "E. coli", "E. coli", "E. coli")), stringsAsFactors = FALSE) colnames(df) df_joined <- left_join_microorganisms(df, "bacteria") colnames(df_joined)