# ==================================================================== # # TITLE # # Antimicrobial Resistance (AMR) Analysis # # # # SOURCE # # https://gitlab.com/msberends/AMR # # # # LICENCE # # (c) 2019 Berends MS (m.s.berends@umcg.nl), Luz CF (c.f.luz@umcg.nl) # # # # This R package is free software; you can freely use and distribute # # it for both personal and commercial purposes under the terms of the # # GNU General Public License version 2.0 (GNU GPL-2), as published by # # the Free Software Foundation. # # # # This R package was created for academic research and was publicly # # released in the hope that it will be useful, but it comes WITHOUT # # ANY WARRANTY OR LIABILITY. # # Visit our website for more info: https://msberends.gitlab.io/AMR. # # ==================================================================== # #' Key antibiotics for first \emph{weighted} isolates #' #' These function can be used to determine first isolates (see \code{\link{first_isolate}}). Using key antibiotics to determine first isolates is more reliable than without key antibiotics. These selected isolates will then be called first \emph{weighted} isolates. #' @param x table with antibiotics coloms, like \code{AMX} or \code{amox} #' @param x,y characters to compare #' @inheritParams first_isolate #' @param universal_1,universal_2,universal_3,universal_4,universal_5,universal_6 column names of \strong{broad-spectrum} antibiotics, case-insensitive. At default, the columns containing these antibiotics will be guessed with \code{\link{guess_ab_col}}. #' @param GramPos_1,GramPos_2,GramPos_3,GramPos_4,GramPos_5,GramPos_6 column names of antibiotics for \strong{Gram positives}, case-insensitive. At default, the columns containing these antibiotics will be guessed with \code{\link{guess_ab_col}}. #' @param GramNeg_1,GramNeg_2,GramNeg_3,GramNeg_4,GramNeg_5,GramNeg_6 column names of antibiotics for \strong{Gram negatives}, case-insensitive. At default, the columns containing these antibiotics will be guessed with \code{\link{guess_ab_col}}. #' @param warnings give warning about missing antibiotic columns, they will anyway be ignored #' @param ... other parameters passed on to function #' @details The function \code{key_antibiotics} returns a character vector with 12 antibiotic results for every isolate. These isolates can then be compared using \code{key_antibiotics_equal}, to check if two isolates have generally the same antibiogram. Missing and invalid values are replaced with a dot (\code{"."}). The \code{\link{first_isolate}} function only uses this function on the same microbial species from the same patient. Using this, an MRSA will be included after a susceptible \emph{S. aureus} (MSSA) found within the same episode (see \code{episode} parameter of \code{\link{first_isolate}}). Without key antibiotic comparison it would not. #' #' At default, the antibiotics that are used for \strong{Gram positive bacteria} are (colum names): \cr #' \code{"amox"}, \code{"amcl"}, \code{"cfur"}, \code{"pita"}, \code{"cipr"}, \code{"trsu"} (until here is universal), \code{"vanc"}, \code{"teic"}, \code{"tetr"}, \code{"eryt"}, \code{"oxac"}, \code{"rifa"}. #' #' At default, the antibiotics that are used for \strong{Gram negative bacteria} are (colum names): \cr #' \code{"amox"}, \code{"amcl"}, \code{"cfur"}, \code{"pita"}, \code{"cipr"}, \code{"trsu"} (until here is universal), \code{"gent"}, \code{"tobr"}, \code{"coli"}, \code{"cfot"}, \code{"cfta"}, \code{"mero"}. #' #' #' The function \code{key_antibiotics_equal} checks the characters returned by \code{key_antibiotics} for equality, and returns a logical vector. #' @inheritSection first_isolate Key antibiotics #' @rdname key_antibiotics #' @export #' @importFrom dplyr %>% mutate if_else pull #' @importFrom crayon blue bold #' @seealso \code{\link{first_isolate}} #' @inheritSection AMR Read more on our website! #' @examples #' # septic_patients is a dataset available in the AMR package #' ?septic_patients #' library(dplyr) #' # set key antibiotics to a new variable #' my_patients <- septic_patients %>% #' mutate(keyab = key_antibiotics(.)) %>% #' mutate( #' # now calculate first isolates #' first_regular = first_isolate(., col_keyantibiotics = FALSE), #' # and first WEIGHTED isolates #' first_weighted = first_isolate(., col_keyantibiotics = "keyab") #' ) #' #' # Check the difference, in this data set it results in 7% more isolates: #' sum(my_patients$first_regular, na.rm = TRUE) #' sum(my_patients$first_weighted, na.rm = TRUE) #' #' #' # output of the `key_antibiotics` function could be like this: #' strainA <- "SSSRR.S.R..S" #' strainB <- "SSSIRSSSRSSS" #' #' key_antibiotics_equal(strainA, strainB) #' # TRUE, because I is ignored (as well as missing values) #' #' key_antibiotics_equal(strainA, strainB, ignore_I = FALSE) #' # FALSE, because I is not ignored and so the 4th value differs key_antibiotics <- function(x, col_mo = NULL, universal_1 = guess_ab_col(x, "AMX"), universal_2 = guess_ab_col(x, "AMC"), universal_3 = guess_ab_col(x, "CXM"), universal_4 = guess_ab_col(x, "TZP"), universal_5 = guess_ab_col(x, "CIP"), universal_6 = guess_ab_col(x, "SXT"), GramPos_1 = guess_ab_col(x, "VAN"), GramPos_2 = guess_ab_col(x, "TEC"), GramPos_3 = guess_ab_col(x, "TCY"), GramPos_4 = guess_ab_col(x, "ERY"), GramPos_5 = guess_ab_col(x, "OXA"), GramPos_6 = guess_ab_col(x, "RIF"), GramNeg_1 = guess_ab_col(x, "GEN"), GramNeg_2 = guess_ab_col(x, "TOB"), GramNeg_3 = guess_ab_col(x, "COL"), GramNeg_4 = guess_ab_col(x, "CTX"), GramNeg_5 = guess_ab_col(x, "CAZ"), GramNeg_6 = guess_ab_col(x, "MEM"), warnings = TRUE, ...) { # try to find columns based on type # -- mo if (is.null(col_mo)) { col_mo <- search_type_in_df(x = x, type = "mo") } if (is.null(col_mo)) { stop("`col_mo` must be set.", call. = FALSE) } # check columns col.list <- c(universal_1, universal_2, universal_3, universal_4, universal_5, universal_6, GramPos_1, GramPos_2, GramPos_3, GramPos_4, GramPos_5, GramPos_6, GramNeg_1, GramNeg_2, GramNeg_3, GramNeg_4, GramNeg_5, GramNeg_6) check_available_columns <- function(x, col.list, info = TRUE) { # check columns col.list <- col.list[!is.na(col.list) & !is.null(col.list)] names(col.list) <- col.list col.list.bak <- col.list # are they available as upper case or lower case then? for (i in 1:length(col.list)) { if (is.null(col.list[i]) | isTRUE(is.na(col.list[i]))) { col.list[i] <- NA } else if (toupper(col.list[i]) %in% colnames(x)) { col.list[i] <- toupper(col.list[i]) } else if (tolower(col.list[i]) %in% colnames(x)) { col.list[i] <- tolower(col.list[i]) } else if (!col.list[i] %in% colnames(x)) { col.list[i] <- NA } } if (!all(col.list %in% colnames(x))) { if (info == TRUE) { warning('Some columns do not exist and will be ignored: ', col.list.bak[!(col.list %in% colnames(x))] %>% toString(), '.\nTHIS MAY STRONGLY INFLUENCE THE OUTCOME.', immediate. = TRUE, call. = FALSE) } } col.list } col.list <- check_available_columns(x = x, col.list = col.list, info = warnings) universal_1 <- col.list[universal_1] universal_2 <- col.list[universal_2] universal_3 <- col.list[universal_3] universal_4 <- col.list[universal_4] universal_5 <- col.list[universal_5] universal_6 <- col.list[universal_6] GramPos_1 <- col.list[GramPos_1] GramPos_2 <- col.list[GramPos_2] GramPos_3 <- col.list[GramPos_3] GramPos_4 <- col.list[GramPos_4] GramPos_5 <- col.list[GramPos_5] GramPos_6 <- col.list[GramPos_6] GramNeg_1 <- col.list[GramNeg_1] GramNeg_2 <- col.list[GramNeg_2] GramNeg_3 <- col.list[GramNeg_3] GramNeg_4 <- col.list[GramNeg_4] GramNeg_5 <- col.list[GramNeg_5] GramNeg_6 <- col.list[GramNeg_6] universal <- c(universal_1, universal_2, universal_3, universal_4, universal_5, universal_6) gram_positive = c(universal, GramPos_1, GramPos_2, GramPos_3, GramPos_4, GramPos_5, GramPos_6) gram_positive <- gram_positive[!is.null(gram_positive)] gram_positive <- gram_positive[!is.na(gram_positive)] if (length(gram_positive) < 12) { warning("only using ", length(gram_positive), " different antibiotics as key antibiotics for Gram positives. See ?key_antibiotics.", call. = FALSE) } gram_negative = c(universal, GramNeg_1, GramNeg_2, GramNeg_3, GramNeg_4, GramNeg_5, GramNeg_6) gram_negative <- gram_negative[!is.null(gram_negative)] gram_negative <- gram_negative[!is.na(gram_negative)] if (length(gram_negative) < 12) { warning("only using ", length(gram_negative), " different antibiotics as key antibiotics for Gram negatives. See ?key_antibiotics.", call. = FALSE) } # join to microorganisms data set x <- x %>% mutate_at(vars(col_mo), as.mo) %>% left_join_microorganisms(by = col_mo) %>% mutate(key_ab = NA_character_, gramstain = mo_gramstain(pull(., col_mo))) # Gram + x <- x %>% mutate(key_ab = if_else(gramstain == "Gram positive", apply(X = x[, gram_positive], MARGIN = 1, FUN = function(x) paste(x, collapse = "")), key_ab)) # Gram - x <- x %>% mutate(key_ab = if_else(gramstain == "Gram negative", apply(X = x[, gram_negative], MARGIN = 1, FUN = function(x) paste(x, collapse = "")), key_ab)) # format key_abs <- x %>% pull(key_ab) %>% gsub('(NA|NULL)', '.', .) %>% gsub('[^SIR]', '.', ., ignore.case = TRUE) key_abs } #' @importFrom dplyr progress_estimated %>% #' @rdname key_antibiotics #' @export key_antibiotics_equal <- function(x, y, type = c("keyantibiotics", "points"), ignore_I = TRUE, points_threshold = 2, info = FALSE) { # x is active row, y is lag type <- type[1] if (length(x) != length(y)) { stop('Length of `x` and `y` must be equal.') } # only show progress bar on points or when at least 5000 isolates info_needed <- info == TRUE & (type == "points" | length(x) > 5000) result <- logical(length(x)) if (info_needed == TRUE) { p <- dplyr::progress_estimated(length(x)) } for (i in 1:length(x)) { if (info_needed == TRUE) { p$tick()$print() } if (is.na(x[i])) { x[i] <- '' } if (is.na(y[i])) { y[i] <- '' } if (x[i] == y[i]) { result[i] <- TRUE } else if (nchar(x[i]) != nchar(y[i])) { result[i] <- FALSE } else { x_split <- strsplit(x[i], "")[[1]] y_split <- strsplit(y[i], "")[[1]] if (type == 'keyantibiotics') { if (ignore_I == TRUE) { x_split[x_split == "I"] <- "." y_split[y_split == "I"] <- "." } y_split[x_split == "."] <- "." x_split[y_split == "."] <- "." result[i] <- all(x_split == y_split) } else if (type == 'points') { # count points for every single character: # - no change is 0 points # - I <-> S|R is 0.5 point # - S|R <-> R|S is 1 point # use the levels of as.rsi (S = 1, I = 2, R = 3) suppressWarnings(x_split <- x_split %>% as.rsi() %>% as.double()) suppressWarnings(y_split <- y_split %>% as.rsi() %>% as.double()) points <- (x_split - y_split) %>% abs() %>% sum(na.rm = TRUE) / 2 result[i] <- points >= points_threshold } else { stop('`', type, '` is not a valid value for type, must be "points" or "keyantibiotics". See ?first_isolate.') } } } if (info_needed == TRUE) { cat('\n') } result }