% Generated by roxygen2: do not edit by hand % Please edit documentation in R/ggplot_rsi.R \name{ggplot_rsi} \alias{ggplot_rsi} \alias{geom_rsi} \alias{facet_rsi} \alias{scale_y_percent} \alias{scale_rsi_colours} \alias{theme_rsi} \alias{labels_rsi_count} \title{AMR plots with \code{ggplot2}} \usage{ ggplot_rsi(data, position = NULL, x = "Antibiotic", fill = "Interpretation", facet = NULL, breaks = seq(0, 1, 0.1), limits = NULL, translate_ab = "official", fun = count_df, nrow = NULL, datalabels = TRUE, datalabels.size = 3, datalabels.colour = "grey15", ...) geom_rsi(position = NULL, x = c("Antibiotic", "Interpretation"), fill = "Interpretation", translate_ab = "official", fun = count_df, ...) facet_rsi(facet = c("Interpretation", "Antibiotic"), nrow = NULL) scale_y_percent(breaks = seq(0, 1, 0.1), limits = NULL) scale_rsi_colours() theme_rsi() labels_rsi_count(position = NULL, x = "Antibiotic", datalabels.size = 3, datalabels.colour = "grey15") } \arguments{ \item{data}{a \code{data.frame} with column(s) of class \code{"rsi"} (see \code{\link{as.rsi}})} \item{position}{position adjustment of bars, either \code{"fill"} (default when \code{fun} is \code{\link{count_df}}), \code{"stack"} (default when \code{fun} is \code{\link{portion_df}}) or \code{"dodge"}} \item{x}{variable to show on x axis, either \code{"Antibiotic"} (default) or \code{"Interpretation"} or a grouping variable} \item{fill}{variable to categorise using the plots legend, either \code{"Antibiotic"} (default) or \code{"Interpretation"} or a grouping variable} \item{facet}{variable to split plots by, either \code{"Interpretation"} (default) or \code{"Antibiotic"} or a grouping variable} \item{breaks}{numeric vector of positions} \item{limits}{numeric vector of length two providing limits of the scale, use \code{NA} to refer to the existing minimum or maximum} \item{translate_ab}{a column name of the \code{\link{antibiotics}} data set to translate the antibiotic abbreviations into, using \code{\link{abname}}. Default behaviour is to translate to official names according to the WHO. Use \code{translate_ab = FALSE} to disable translation.} \item{fun}{function to transform \code{data}, either \code{\link{count_df}} (default) or \code{\link{portion_df}}} \item{nrow}{(when using \code{facet}) number of rows} \item{datalabels}{show datalabels using \code{labels_rsi_count}, will at default only be shown when \code{fun = count_df}} \item{datalabels.size}{size of the datalabels} \item{datalabels.colour}{colour of the datalabels} \item{...}{other parameters passed on to \code{geom_rsi}} } \description{ Use these functions to create bar plots for antimicrobial resistance analysis. All functions rely on internal \code{\link[ggplot2]{ggplot}} functions. } \details{ At default, the names of antibiotics will be shown on the plots using \code{\link{abname}}. This can be set with the option \code{get_antibiotic_names} (a logical value), so change it e.g. to \code{FALSE} with \code{options(get_antibiotic_names = FALSE)}. \strong{The functions}\cr \code{geom_rsi} will take any variable from the data that has an \code{rsi} class (created with \code{\link{as.rsi}}) using \code{fun} (\code{\link{count_df}} at default, can also be \code{\link{portion_df}}) and will plot bars with the percentage R, I and S. The default behaviour is to have the bars stacked and to have the different antibiotics on the x axis. \code{facet_rsi} creates 2d plots (at default based on S/I/R) using \code{\link[ggplot2]{facet_wrap}}. \code{scale_y_percent} transforms the y axis to a 0 to 100\% range using \code{\link[ggplot2]{scale_continuous}}. \code{scale_rsi_colours} sets colours to the bars: green for S, yellow for I and red for R, using \code{\link[ggplot2]{scale_brewer}}. \code{theme_rsi} is a \code{ggplot \link[ggplot2]{theme}} with minimal distraction. \code{labels_rsi_count} print datalabels on the bars with percentage and amount of isolates using \code{\link[ggplot2]{geom_text}} \code{ggplot_rsi} is a wrapper around all above functions that uses data as first input. This makes it possible to use this function after a pipe (\code{\%>\%}). See Examples. } \section{Read more on our website!}{ \if{html}{\figure{logo.png}{options: height=40px style=margin-bottom:5px} \cr} On our website \url{https://msberends.gitlab.io/AMR} you can find \href{https://msberends.gitlab.io/AMR/articles/AMR.html}{a omprehensive tutorial} about how to conduct AMR analysis and find \href{https://msberends.gitlab.io/AMR/reference}{the complete documentation of all functions}, which reads a lot easier than in R. } \examples{ library(dplyr) library(ggplot2) # get antimicrobial results for drugs against a UTI: ggplot(septic_patients \%>\% select(amox, nitr, fosf, trim, cipr)) + geom_rsi() # prettify the plot using some additional functions: df <- septic_patients[, c("amox", "nitr", "fosf", "trim", "cipr")] ggplot(df) + geom_rsi() + scale_y_percent() + scale_rsi_colours() + labels_rsi_count() + theme_rsi() # or better yet, simplify this using the wrapper function - a single command: septic_patients \%>\% select(amox, nitr, fosf, trim, cipr) \%>\% ggplot_rsi() # get only portions and no counts: septic_patients \%>\% select(amox, nitr, fosf, trim, cipr) \%>\% ggplot_rsi(fun = portion_df) # add other ggplot2 parameters as you like: septic_patients \%>\% select(amox, nitr, fosf, trim, cipr) \%>\% ggplot_rsi(width = 0.5, colour = "black", size = 1, linetype = 2, alpha = 0.25) # resistance of ciprofloxacine per age group septic_patients \%>\% mutate(first_isolate = first_isolate(.)) \%>\% filter(first_isolate == TRUE, mo == as.mo("E. coli")) \%>\% # `age_group` is also a function of this package: group_by(age_group = age_groups(age)) \%>\% select(age_group, cipr) \%>\% ggplot_rsi(x = "age_group") \donttest{ # for colourblind mode, use divergent colours from the viridis package: septic_patients \%>\% select(amox, nitr, fosf, trim, cipr) \%>\% ggplot_rsi() + scale_fill_viridis_d() # it also supports groups (don't forget to use the group var on `x` or `facet`): septic_patients \%>\% select(hospital_id, amox, nitr, fosf, trim, cipr) \%>\% group_by(hospital_id) \%>\% ggplot_rsi(x = hospital_id, facet = Antibiotic, nrow = 1) + labs(title = "AMR of Anti-UTI Drugs Per Hospital", x = "Hospital") # genuine analysis: check 2 most prevalent microorganisms septic_patients \%>\% # create new bacterial ID's, with all CoNS under the same group (Becker et al.) mutate(mo = as.mo(mo, Becker = TRUE)) \%>\% # filter on top three bacterial ID's filter(mo \%in\% top_freq(freq(.$mo), 3)) \%>\% # determine first isolates mutate(first_isolate = first_isolate(., col_date = "date", col_patient_id = "patient_id", col_mo = "mo")) \%>\% # filter on first isolates filter(first_isolate == TRUE) \%>\% # get short MO names (like "E. coli") mutate(mo = mo_shortname(mo, Becker = TRUE)) \%>\% # select this short name and some antiseptic drugs select(mo, cfur, gent, cipr) \%>\% # group by MO group_by(mo) \%>\% # plot the thing, putting MOs on the facet ggplot_rsi(x = Antibiotic, facet = mo, translate_ab = FALSE, nrow = 1) + labs(title = "AMR of Top Three Microorganisms In Blood Culture Isolates", subtitle = "Only First Isolates, CoNS grouped according to Becker et al. (2014)", x = "Microorganisms") } }