These functions can be used for generating random MIC values and disk diffusion diameters, for AMR data analysis practice. By providing a microorganism and antimicrobial drug, the generated results will reflect reality as much as possible.
Usage
random_mic(size = NULL, mo = NULL, ab = NULL, skew = "right",
severity = 1, ...)
random_disk(size = NULL, mo = NULL, ab = NULL, skew = "left",
severity = 1, ...)
random_sir(size = NULL, prob_SIR = c(0.33, 0.33, 0.33), ...)
Arguments
- size
Desired size of the returned vector. If used in a data.frame call or
dplyr
verb, will get the current (group) size if left blank.- mo
Any character that can be coerced to a valid microorganism code with
as.mo()
. Can be the same length assize
.- ab
Any character that can be coerced to a valid antimicrobial drug code with
as.ab()
.- skew
Direction of skew for MIC or disk values, either
"right"
or"left"
. A left-skewed distribution has the majority of the data on the right.- severity
Skew severity; higher values will increase the skewedness. Default is
2
; use0
to prevent skewedness.- ...
Ignored, only in place to allow future extensions.
- prob_SIR
A vector of length 3: the probabilities for "S" (1st value), "I" (2nd value) and "R" (3rd value).
Details
Internally, MIC and disk zone values are sampled based on clinical breakpoints defined in the clinical_breakpoints data set. To create specific generated values per bug or drug, set the mo
and/or ab
argument. The MICs are sampled on a log2 scale and disks linearly, using weighted probabilities. The weights are based on the skew
and severity
arguments:
skew = "right"
places more emphasis on lower MIC or higher disk values.skew = "left"
places more emphasis on higher MIC or lower disk values.severity
controls the exponential bias applied.
Examples
random_mic(25)
#> Class 'mic'
#> [1] 0.016 0.125 0.125 0.25 0.5 0.004 0.002 0.002 0.032 0.004
#> [11] 0.032 0.0005 0.5 1 0.016 0.008 2 0.125 0.25 0.25
#> [21] 0.032 1 0.008 0.004 0.25
random_disk(25)
#> Class 'disk'
#> [1] 47 20 36 18 44 43 25 28 26 44 36 42 8 28 44 31 29 49 30 28 39 49 25 49 48
random_sir(25)
#> Class 'sir'
#> [1] R S R S R R S I I I S R R S I I S I I I S S R S S
# add more skewedness, make more realistic by setting a bug and/or drug:
disks <- random_disk(100, severity = 2, mo = "Escherichia coli", ab = "CIP")
plot(disks)
# `plot()` and `ggplot2::autoplot()` allow for coloured bars if `mo` and `ab` are set
plot(disks, mo = "Escherichia coli", ab = "CIP", guideline = "CLSI 2025")
# \donttest{
random_mic(25, "Klebsiella pneumoniae") # range 0.0625-64
#> Class 'mic'
#> [1] 0.004 4 0.032 16 0.016 16 0.001 0.0002 0.002 0.004
#> [11] 0.001 0.0005 0.0001 0.002 0.125 >=64 0.004 0.0005 0.001 0.0002
#> [21] 0.0005 0.001 0.0005 0.004 0.032
random_mic(25, "Klebsiella pneumoniae", "meropenem") # range 0.0625-16
#> Class 'mic'
#> [1] <=0.5 <=0.5 <=0.5 1 <=0.5 <=0.5 <=0.5 <=0.5 <=0.5 <=0.5 1 1
#> [13] <=0.5 <=0.5 <=0.5 <=0.5 1 <=0.5 <=0.5 <=0.5 <=0.5 1 1 <=0.5
#> [25] <=0.5
random_mic(25, "Streptococcus pneumoniae", "meropenem") # range 0.0625-4
#> Class 'mic'
#> [1] >=2 1 1 1 >=2 >=2 >=2 1 >=2 1 1 >=2 1 1 1 >=2 1 1 1
#> [20] >=2 >=2 1 1 1 1
random_disk(25, "Klebsiella pneumoniae") # range 8-50
#> Class 'disk'
#> [1] 28 12 30 26 9 34 30 19 32 31 33 34 30 19 15 24 18 34 12 32 29 33 29 32 17
random_disk(25, "Klebsiella pneumoniae", "ampicillin") # range 11-17
#> Class 'disk'
#> [1] 18 15 19 13 22 20 22 13 18 14 19 13 12 22 20 21 12 20 18 19 20 22 18 17 20
random_disk(25, "Streptococcus pneumoniae", "ampicillin") # range 12-27
#> Class 'disk'
#> [1] 21 31 27 28 30 34 16 32 28 25 25 23 29 26 24 28 27 33 30 19 30 22 27 22 32
# }