% Generated by roxygen2: do not edit by hand % Please edit documentation in R/count.R \name{count} \alias{count} \alias{count_R} \alias{count_IR} \alias{count_I} \alias{count_SI} \alias{count_S} \alias{count_all} \alias{n_rsi} \alias{count_df} \title{Count isolates} \source{ Wickham H. \strong{Tidy Data.} The Journal of Statistical Software, vol. 59, 2014. \url{http://vita.had.co.nz/papers/tidy-data.html} } \usage{ count_R(..., also_single_tested = FALSE) count_IR(..., also_single_tested = FALSE) count_I(..., also_single_tested = FALSE) count_SI(..., also_single_tested = FALSE) count_S(..., also_single_tested = FALSE) count_all(...) n_rsi(...) count_df(data, translate_ab = getOption("get_antibiotic_names", "official"), combine_IR = FALSE) } \arguments{ \item{...}{one or more vectors (or columns) with antibiotic interpretations. They will be transformed internally with \code{\link{as.rsi}} if needed.} \item{also_single_tested}{a logical to indicate whether (in combination therapies) also observations should be included where not all antibiotics were tested, but at least one of the tested antibiotics contains a target interpretation (e.g. S in case of \code{portion_S} and R in case of \code{portion_R}). \strong{This would lead to selection bias in almost all cases.}} \item{data}{a \code{data.frame} containing columns with class \code{rsi} (see \code{\link{as.rsi}})} \item{translate_ab}{a column name of the \code{\link{antibiotics}} data set to translate the antibiotic abbreviations to, using \code{\link{abname}}. This can be set with \code{\link{getOption}("get_antibiotic_names")}.} \item{combine_IR}{a logical to indicate whether all values of I and R must be merged into one, so the output only consists of S vs. IR (susceptible vs. non-susceptible)} } \value{ Integer } \description{ These functions can be used to count resistant/susceptible microbial isolates. All functions support quasiquotation with pipes, can be used in \code{dplyr}s \code{\link[dplyr]{summarise}} and support grouped variables, see \emph{Examples}. \code{count_R} and \code{count_IR} can be used to count resistant isolates, \code{count_S} and \code{count_SI} can be used to count susceptible isolates.\cr } \details{ These functions are meant to count isolates. Use the \code{\link{portion}_*} functions to calculate microbial resistance. \code{n_rsi} is an alias of \code{count_all}. They can be used to count all available isolates, i.e. where all input antibiotics have an available result (S, I or R). Their use is equal to \code{\link{n_distinct}}. Their function is equal to \code{count_S(...) + count_IR(...)}. \code{count_df} takes any variable from \code{data} that has an \code{"rsi"} class (created with \code{\link{as.rsi}}) and counts the amounts of R, I and S. The resulting \emph{tidy data} (see Source) \code{data.frame} will have three rows (S/I/R) and a column for each variable with class \code{"rsi"}. } \section{Read more on our website!}{ On our website \url{https://msberends.gitlab.io/AMR} you can find \href{https://msberends.gitlab.io/AMR/articles/AMR.html}{a comprehensive tutorial} about how to conduct AMR analysis, the \href{https://msberends.gitlab.io/AMR/reference}{complete documentation of all functions} (which reads a lot easier than here in R) and \href{https://msberends.gitlab.io/AMR/articles/WHONET.html}{an example analysis using WHONET data}. } \examples{ # septic_patients is a data set available in the AMR package. It is true, genuine data. ?septic_patients # Count resistant isolates count_R(septic_patients$amox) count_IR(septic_patients$amox) # Or susceptible isolates count_S(septic_patients$amox) count_SI(septic_patients$amox) # Count all available isolates count_all(septic_patients$amox) n_rsi(septic_patients$amox) # Since n_rsi counts available isolates, you can # calculate back to count e.g. non-susceptible isolates. # This results in the same: count_IR(septic_patients$amox) portion_IR(septic_patients$amox) * n_rsi(septic_patients$amox) library(dplyr) septic_patients \%>\% group_by(hospital_id) \%>\% summarise(R = count_R(cipr), I = count_I(cipr), S = count_S(cipr), n1 = count_all(cipr), # the actual total; sum of all three n2 = n_rsi(cipr), # same - analogous to n_distinct total = n()) # NOT the amount of tested isolates! # Count co-resistance between amoxicillin/clav acid and gentamicin, # so we can see that combination therapy does a lot more than mono therapy. # Please mind that `portion_S` calculates percentages right away instead. count_S(septic_patients$amcl) # S = 1057 (67.1\%) count_all(septic_patients$amcl) # n = 1576 count_S(septic_patients$gent) # S = 1372 (74.0\%) count_all(septic_patients$gent) # n = 1855 with(septic_patients, count_S(amcl, gent)) # S = 1396 (92.0\%) with(septic_patients, # n = 1517 n_rsi(amcl, gent)) # Get portions S/I/R immediately of all rsi columns septic_patients \%>\% select(amox, cipr) \%>\% count_df(translate = FALSE) # It also supports grouping variables septic_patients \%>\% select(hospital_id, amox, cipr) \%>\% group_by(hospital_id) \%>\% count_df(translate = FALSE) } \seealso{ \code{\link{portion}_*} to calculate microbial resistance and susceptibility. } \keyword{antibiotics} \keyword{isolate} \keyword{isolates} \keyword{resistance} \keyword{rsi} \keyword{susceptibility}