Skip to contents

These functions determine which items in a vector can be considered (the start of) a new episode, based on the argument episode_days. This can be used to determine clinical episodes for any epidemiological analysis. The get_episode() function returns the index number of the episode per group, while the is_new_episode() function returns TRUE for every new get_episode() index, and is thus equal to !duplicated(get_episode(...)).

Usage

get_episode(x, episode_days, ...)

is_new_episode(x, episode_days, ...)

Arguments

x

vector of dates (class Date or POSIXt), will be sorted internally to determine episodes

episode_days

required episode length in days, can also be less than a day or Inf, see Details

...

ignored, only in place to allow future extensions

Value

Details

The functions get_episode() and is_new_episode() differ in this way when setting episode_days to 365:

person_iddateget_episode()is_new_episode()
A2019-01-011TRUE
A2019-03-011FALSE
A2021-01-012TRUE
B2008-01-011TRUE
B2008-01-011FALSE
C2020-01-011TRUE

Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least episode_days days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least episode_days days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.

The first_isolate() function is a wrapper around the is_new_episode() function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.

The dplyr package is not required for these functions to work, but these episode functions do support variable grouping and work conveniently inside dplyr verbs such as filter(), mutate() and summarise().

See also

Examples

# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 100), ]

get_episode(df$date, episode_days = 60) # indices
#>   [1] 41 12  5 11 39 27 43 35  7 21 18 14 45 44 26 41  9 36 34  1 14 14 31  4 38
#>  [26]  5 28 40 15 27 26 34 16 46 10 33 18  9  7  8 41  3  3 22 36 42 13 12 22 15
#>  [51] 11 19 21 39 20  2  9 25  3 13 37 12 29 11  2 23 31  6 28 47 29  5 32 24 25
#>  [76]  3 43 30 24 36  2  1 14 18 40  6 19  9 20 11 19 15 31 12  3 17 32 24 45 38
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#>   [1]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
#>  [13]  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE
#>  [25]  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE
#>  [37] FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE
#>  [49] FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE
#>  [61]  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE
#>  [73]  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
#>  [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
#>  [97] FALSE FALSE FALSE FALSE

# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 5 × 46
#>   date       patient   age gender ward     mo           PEN   OXA   FLC   AMX  
#>   <date>     <chr>   <dbl> <chr>  <chr>    <mo>         <sir> <sir> <sir> <sir>
#> 1 2003-05-26 065187     76 F      ICU      B_STPHY_AURS R     NA    S     R    
#> 2 2003-04-30 6BC362     62 M      ICU      B_STPHY_EPDR R     NA    R     R    
#> 3 2003-06-01 CBC201     87 F      Clinical B_STPHY_CONS S     NA    S     NA   
#> 4 2003-04-22 114570     74 M      ICU      B_STPHY_CONS R     NA    R     R    
#> 5 2003-04-08 114570     74 M      ICU      B_STRPT_PYGN S     NA    S     S    
#> # … with 36 more variables: AMC <sir>, AMP <sir>, TZP <sir>, CZO <sir>,
#> #   FEP <sir>, CXM <sir>, FOX <sir>, CTX <sir>, CAZ <sir>, CRO <sir>,
#> #   GEN <sir>, TOB <sir>, AMK <sir>, KAN <sir>, TMP <sir>, SXT <sir>,
#> #   NIT <sir>, FOS <sir>, LNZ <sir>, CIP <sir>, MFX <sir>, VAN <sir>,
#> #   TEC <sir>, TCY <sir>, TGC <sir>, DOX <sir>, ERY <sir>, CLI <sir>,
#> #   AZM <sir>, IPM <sir>, MEM <sir>, MTR <sir>, CHL <sir>, COL <sir>,
#> #   MUP <sir>, RIF <sir>

# the functions also work for less than a day, e.g. to include one per hour:
get_episode(
  c(
    Sys.time(),
    Sys.time() + 60 * 60
  ),
  episode_days = 1 / 24
)
#> [1] 1 2

# \donttest{
if (require("dplyr")) {
  # is_new_episode() can also be used in dplyr verbs to determine patient
  # episodes based on any (combination of) grouping variables:
  df %>%
    mutate(condition = sample(
      x = c("A", "B", "C"),
      size = 100,
      replace = TRUE
    )) %>%
    group_by(patient, condition) %>%
    mutate(new_episode = is_new_episode(date, 365)) %>%
    select(patient, date, condition, new_episode) %>%
    arrange(patient, condition, date)
}
#> # A tibble: 100 × 4
#> # Groups:   patient, condition [97]
#>    patient date       condition new_episode
#>    <chr>   <date>     <chr>     <lgl>      
#>  1 065133  2011-12-19 B         TRUE       
#>  2 065187  2003-05-26 B         TRUE       
#>  3 080086  2007-10-26 C         TRUE       
#>  4 114570  2003-04-08 A         TRUE       
#>  5 114570  2003-04-22 B         TRUE       
#>  6 126334  2009-11-26 A         TRUE       
#>  7 146120  2011-09-23 A         TRUE       
#>  8 15D386  2004-09-06 A         TRUE       
#>  9 161740  2005-06-21 A         TRUE       
#> 10 16F0F7  2010-01-17 C         TRUE       
#> # … with 90 more rows

if (require("dplyr")) {
  df %>%
    group_by(ward, patient) %>%
    transmute(date,
      patient,
      new_index = get_episode(date, 60),
      new_logical = is_new_episode(date, 60)
    ) %>%
    arrange(patient, ward, date)
}
#> # A tibble: 100 × 5
#> # Groups:   ward, patient [95]
#>    ward       date       patient new_index new_logical
#>    <chr>      <date>     <chr>       <int> <lgl>      
#>  1 Clinical   2011-12-19 065133          1 TRUE       
#>  2 ICU        2003-05-26 065187          1 TRUE       
#>  3 Clinical   2007-10-26 080086          1 TRUE       
#>  4 ICU        2003-04-08 114570          1 FALSE      
#>  5 ICU        2003-04-22 114570          1 TRUE       
#>  6 Outpatient 2009-11-26 126334          1 TRUE       
#>  7 Clinical   2011-09-23 146120          1 TRUE       
#>  8 ICU        2004-09-06 15D386          1 TRUE       
#>  9 Clinical   2005-06-21 161740          1 TRUE       
#> 10 Clinical   2010-01-17 16F0F7          1 TRUE       
#> # … with 90 more rows

if (require("dplyr")) {
  df %>%
    group_by(ward) %>%
    summarise(
      n_patients = n_distinct(patient),
      n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
      n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
      n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
    )
}
#> # A tibble: 3 × 5
#>   ward       n_patients n_episodes_365 n_episodes_60 n_episodes_30
#>   <chr>           <int>          <int>         <int>         <int>
#> 1 Clinical           60             13            33            45
#> 2 ICU                27              9            21            24
#> 3 Outpatient          8              6             7             7

# grouping on patients and microorganisms leads to the same
# results as first_isolate() when using 'episode-based':
if (require("dplyr")) {
  x <- df %>%
    filter_first_isolate(
      include_unknown = TRUE,
      method = "episode-based"
    )

  y <- df %>%
    group_by(patient, mo) %>%
    filter(is_new_episode(date, 365)) %>%
    ungroup()

  identical(x, y)
}
#> [1] FALSE

# but is_new_episode() has a lot more flexibility than first_isolate(),
# since you can now group on anything that seems relevant:
if (require("dplyr")) {
  df %>%
    group_by(patient, mo, ward) %>%
    mutate(flag_episode = is_new_episode(date, 365)) %>%
    select(group_vars(.), flag_episode)
}
#> # A tibble: 100 × 4
#> # Groups:   patient, mo, ward [99]
#>    patient mo           ward       flag_episode
#>    <chr>   <mo>         <chr>      <lgl>       
#>  1 E52521  B_KLBSL_AERG Clinical   TRUE        
#>  2 6D6319  B_STPHY_CONS Outpatient TRUE        
#>  3 984417  B_STPHY_AURS ICU        TRUE        
#>  4 161740  B_STPHY_CONS Clinical   TRUE        
#>  5 904640  B_PROTS_MRBL Clinical   TRUE        
#>  6 387C40  B_KLBSL_PNMN Clinical   TRUE        
#>  7 59F400  B_STRPT_PNMN ICU        TRUE        
#>  8 A97263  B_ESCHR_COLI Clinical   TRUE        
#>  9 619705  B_KLBSL_PNMN ICU        TRUE        
#> 10 314039    UNKNOWN    Clinical   TRUE        
#> # … with 90 more rows
# }