# ==================================================================== #
# TITLE                                                                #
# Antimicrobial Resistance (AMR) Data Analysis for R                   #
#                                                                      #
# SOURCE                                                               #
# https://github.com/msberends/AMR                                     #
#                                                                      #
# LICENCE                                                              #
# (c) 2018-2021 Berends MS, Luz CF et al.                              #
# Developed at the University of Groningen, the Netherlands, in        #
# collaboration with non-profit organisations Certe Medical            #
# Diagnostics & Advice, and University Medical Center Groningen.       # 
#                                                                      #
# This R package is free software; you can freely use and distribute   #
# it for both personal and commercial purposes under the terms of the  #
# GNU General Public License version 2.0 (GNU GPL-2), as published by  #
# the Free Software Foundation.                                        #
# We created this package for both routine data analysis and academic  #
# research and it was publicly released in the hope that it will be    #
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY.              #
#                                                                      #
# Visit our website for the full manual and a complete tutorial about  #
# how to conduct AMR data analysis: https://msberends.github.io/AMR/   #
# ==================================================================== #

expect_error(suppressWarnings(mdro(example_isolates, country = "invalid", col_mo = "mo", info = TRUE)))
expect_error(suppressWarnings(mdro(example_isolates, country = "fr", info = TRUE)))
expect_error(mdro(example_isolates, guideline = c("BRMO", "MRGN"), info = TRUE))
expect_error(mdro(example_isolates, col_mo = "invalid", info = TRUE))

expect_stdout(suppressMessages(suppressWarnings(mdro(example_isolates, info = TRUE))))
expect_stdout(suppressMessages(suppressWarnings(mdro(example_isolates, "eucast3.1", info = TRUE))))
expect_stdout(outcome <- suppressMessages(suppressWarnings(eucast_exceptional_phenotypes(example_isolates, info = TRUE))))
# check class
expect_identical(class(outcome), c("ordered", "factor"))

expect_stdout(outcome <- mdro(example_isolates, "nl", info = TRUE))
# check class
expect_identical(class(outcome), c("ordered", "factor"))

# example_isolates should have these finding using Dutch guidelines
expect_equal(as.double(table(outcome)),
             c(1970, 24, 6)) # 1970 neg, 24 unconfirmed, 6 pos

expect_equal(brmo(example_isolates, info = FALSE),
             mdro(example_isolates, guideline = "BRMO", info = FALSE))

# test Dutch P. aeruginosa MDRO
expect_equal(
  as.character(mdro(data.frame(mo = as.mo("P. aeruginosa"),
                               cfta = "S",
                               cipr = "S",
                               mero = "S",
                               imip = "S",
                               gent = "S",
                               tobr = "S",
                               pita = "S"),
                    guideline = "BRMO",
                    col_mo = "mo",
                    info = FALSE)),
  "Negative")
expect_equal(
  as.character(mdro(data.frame(mo = as.mo("P. aeruginosa"),
                               cefta = "R",
                               cipr = "R",
                               mero = "R",
                               imip = "R",
                               gent = "R",
                               tobr = "R",
                               pita = "R"),
                    guideline = "BRMO",
                    col_mo = "mo",
                    info = FALSE)),
  "Positive")

# German 3MRGN and 4MRGN
expect_equal(as.character(mrgn(
  data.frame(mo = c("E. coli", "E. coli", "K. pneumoniae", "E. coli",
                    "A. baumannii", "A. baumannii", "A. baumannii",
                    "P. aeruginosa", "P. aeruginosa", "P. aeruginosa"), 
             PIP = c("S", "R", "R", "S",
                     "S", "R", "R",
                     "S", "R", "R"),
             CTX = c("S", "R", "R", "S",
                     "R", "R", "R",
                     "R", "R", "R"),
             IPM = c("S", "R", "S", "R",
                     "R", "R", "S",
                     "S", "R", "R"),
             CIP = c("S", "R", "R", "S",
                     "R", "R", "R",
                     "R", "S", "R"),
             stringsAsFactors = FALSE))),
  c("Negative", "4MRGN", "3MRGN", "4MRGN",  "4MRGN",  "4MRGN", "3MRGN", "Negative", "3MRGN", "4MRGN"))

# MDR TB
expect_equal(
  # select only rifampicine, mo will be determined automatically (as M. tuberculosis),
  # number of mono-resistant strains should be equal to number of rifampicine-resistant strains
  as.double(table(mdr_tb(example_isolates[, "RIF", drop = FALSE])))[2],
  count_R(example_isolates$RIF))

x <- data.frame(rifampicin = random_rsi(5000, prob_RSI = c(0.4, 0.1, 0.5)),
                inh = random_rsi(5000, prob_RSI = c(0.4, 0.1, 0.5)),
                gatifloxacin = random_rsi(5000, prob_RSI = c(0.4, 0.1, 0.5)),
                eth = random_rsi(5000, prob_RSI = c(0.4, 0.1, 0.5)),
                pza = random_rsi(5000, prob_RSI = c(0.4, 0.1, 0.5)),
                MFX = random_rsi(5000, prob_RSI = c(0.4, 0.1, 0.5)),
                KAN = random_rsi(5000, prob_RSI = c(0.4, 0.1, 0.5)))
expect_true(length(unique(mdr_tb(x))) > 2)

# check the guideline by Magiorakos  et al. (2012), the default guideline
stau <- data.frame(mo = c("S. aureus", "S. aureus", "S. aureus", "S. aureus"), 
                   GEN = c("R", "R", "S", "R"), 
                   RIF = c("S", "R", "S", "R"), 
                   CPT = c("S", "R", "R", "R"), 
                   OXA = c("S", "R", "R", "R"), 
                   CIP = c("S", "S", "R", "R"), 
                   MFX = c("S", "S", "R", "R"),
                   SXT = c("S", "S", "R", "R"), 
                   FUS = c("S", "S", "R", "R"),     
                   VAN = c("S", "S", "R", "R"), 
                   TEC = c("S", "S", "R", "R"),     
                   TLV = c("S", "S", "R", "R"), 
                   TGC = c("S", "S", "R", "R"),     
                   CLI = c("S", "S", "R", "R"), 
                   DAP = c("S", "S", "R", "R"),     
                   ERY = c("S", "S", "R", "R"), 
                   LNZ = c("S", "S", "R", "R"),     
                   CHL = c("S", "S", "R", "R"), 
                   FOS = c("S", "S", "R", "R"),     
                   QDA = c("S", "S", "R", "R"), 
                   TCY = c("S", "S", "R", "R"),     
                   DOX = c("S", "S", "R", "R"), 
                   MNO = c("S", "S", "R", "R"),
                   stringsAsFactors = FALSE)
expect_equal(as.integer(mdro(stau)), c(1:4))
expect_inherits(mdro(stau, verbose = TRUE), "data.frame")

ente <- data.frame(mo = c("Enterococcus", "Enterococcus", "Enterococcus", "Enterococcus"), 
                   GEH = c("R", "R", "S", "R"), 
                   STH = c("S", "R", "S", "R"), 
                   IPM = c("S", "R", "R", "R"), 
                   MEM = c("S", "R", "R", "R"), 
                   DOR = c("S", "S", "R", "R"), 
                   CIP = c("S", "S", "R", "R"), 
                   LVX = c("S", "S", "R", "R"), 
                   MFX = c("S", "S", "R", "R"),     
                   VAN = c("S", "S", "R", "R"), 
                   TEC = c("S", "S", "R", "R"),     
                   TGC = c("S", "S", "R", "R"), 
                   DAP = c("S", "S", "R", "R"),     
                   LNZ = c("S", "S", "R", "R"), 
                   AMP = c("S", "S", "R", "R"),     
                   QDA = c("S", "S", "R", "R"), 
                   DOX = c("S", "S", "R", "R"),     
                   MNO = c("S", "S", "R", "R"),
                   stringsAsFactors = FALSE)
expect_equal(as.integer(mdro(ente)), c(1:4))
expect_inherits(mdro(ente, verbose = TRUE), "data.frame")

entero <- data.frame(mo = c("E. coli", "E. coli", "E. coli", "E. coli"),
                     GEN = c("R", "R", "S", "R"), TOB = c("S", "R", "S", "R"), 
                     AMK = c("S", "R", "R", "R"), NET = c("S", "R", "R", "R"), 
                     CPT = c("S", "R", "R", "R"), TCC = c("S", "R", "R", "R"), 
                     TZP = c("S", "S", "R", "R"), ETP = c("S", "S", "R", "R"), 
                     IPM = c("S", "S", "R", "R"), MEM = c("S", "S", "R", "R"), 
                     DOR = c("S", "S", "R", "R"), CZO = c("S", "S", "R", "R"), 
                     CXM = c("S", "S", "R", "R"), CTX = c("S", "S", "R", "R"), 
                     CAZ = c("S", "S", "R", "R"), FEP = c("S", "S", "R", "R"), 
                     FOX = c("S", "S", "R", "R"), CTT = c("S", "S", "R", "R"), 
                     CIP = c("S", "S", "R", "R"), SXT = c("S", "S", "R", "R"), 
                     TGC = c("S", "S", "R", "R"), ATM = c("S", "S", "R", "R"), 
                     AMP = c("S", "S", "R", "R"), AMC = c("S", "S", "R", "R"), 
                     SAM = c("S", "S", "R", "R"), CHL = c("S", "S", "R", "R"), 
                     FOS = c("S", "S", "R", "R"), COL = c("S", "S", "R", "R"), 
                     TCY = c("S", "S", "R", "R"), DOX = c("S", "S", "R", "R"), 
                     MNO = c("S", "S", "R", "R"),
                     stringsAsFactors = FALSE)
expect_equal(as.integer(mdro(entero)), c(1:4))
expect_inherits(mdro(entero, verbose = TRUE), "data.frame")

pseud <- data.frame(mo = c("P. aeruginosa", "P. aeruginosa", "P. aeruginosa", "P. aeruginosa"),
                    GEN = c("R", "R", "S", "R"), TOB = c("S", "S", "S", "R"), 
                    AMK = c("S", "S", "R", "R"), NET = c("S", "S", "R", "R"),
                    IPM = c("S", "R", "R", "R"), MEM = c("S", "S", "R", "R"), 
                    DOR = c("S", "S", "R", "R"), CAZ = c("S", "S", "R", "R"), 
                    FEP = c("S", "R", "R", "R"), CIP = c("S", "S", "R", "R"), 
                    LVX = c("S", "S", "R", "R"), TCC = c("S", "S", "R", "R"), 
                    TZP = c("S", "S", "R", "R"), ATM = c("S", "S", "R", "R"), 
                    FOS = c("S", "S", "R", "R"), COL = c("S", "S", "R", "R"), 
                    PLB = c("S", "S", "R", "R"),
                    stringsAsFactors = FALSE)
expect_equal(as.integer(mdro(pseud)), c(1:4))
expect_inherits(mdro(pseud, verbose = TRUE), "data.frame")

acin <- data.frame(mo = c("A. baumannii", "A. baumannii", "A. baumannii", "A. baumannii"), 
                   GEN = c("R", "R", "S", "R"), TOB = c("S", "R", "S", "R"), 
                   AMK = c("S", "R", "R", "R"), NET = c("S", "R", "R", "R"), 
                   IPM = c("S", "S", "R", "R"), MEM = c("S", "R", "R", "R"),
                   DOR = c("S", "S", "R", "R"), CIP = c("S", "S", "R", "R"), 
                   LVX = c("S", "S", "R", "R"), TZP = c("S", "S", "R", "R"), 
                   TCC = c("S", "S", "R", "R"), CTX = c("S", "S", "R", "R"), 
                   CRO = c("S", "S", "R", "R"), CAZ = c("S", "S", "R", "R"), 
                   FEP = c("S", "R", "R", "R"), SXT = c("S", "S", "R", "R"), 
                   SAM = c("S", "S", "R", "R"), COL = c("S", "S", "R", "R"), 
                   PLB = c("S", "S", "R", "R"), TCY = c("S", "S", "R", "R"), 
                   DOX = c("S", "S", "R", "R"), MNO = c("S", "S", "R", "R"),
                   stringsAsFactors = FALSE)
expect_equal(as.integer(mdro(acin)), c(1:4))
expect_inherits(mdro(acin, verbose = TRUE), "data.frame")

# custom rules
custom <- custom_mdro_guideline("CIP == 'R' & age > 60" ~ "Elderly Type A",
                                "ERY == 'R' & age > 60" ~ "Elderly Type B",
                                as_factor = TRUE)
expect_stdout(print(custom))
expect_stdout(print(c(custom, custom)))
expect_stdout(print(as.list(custom, custom)))

expect_stdout(x <- mdro(example_isolates, guideline = custom, info = TRUE))
expect_equal(as.double(table(x)), c(1070, 198, 732))

expect_stdout(print(custom_mdro_guideline(AMX == "R" ~ "test", as_factor = FALSE)))
expect_error(custom_mdro_guideline())
expect_error(custom_mdro_guideline("test"))
expect_error(custom_mdro_guideline("test" ~ c(1:3)))
expect_error(custom_mdro_guideline("test" ~ A))
expect_warning(mdro(example_isolates,
                    # since `test` gives an error, it will be ignored with a warning
                    guideline = custom_mdro_guideline(test ~ "A"), 
                    info = FALSE))

# print groups
if (suppressWarnings(require("dplyr"))) {
  expect_stdout(x <- mdro(example_isolates %>% group_by(hospital_id), info = TRUE))
  expect_stdout(x <- mdro(example_isolates %>% group_by(hospital_id), guideline = custom, info = TRUE))
}