# ==================================================================== # # TITLE: # # AMR: An R Package for Working with Antimicrobial Resistance Data # # # # SOURCE CODE: # # https://github.com/msberends/AMR # # # # PLEASE CITE THIS SOFTWARE AS: # # Berends MS, Luz CF, Friedrich AW, et al. (2022). # # AMR: An R Package for Working with Antimicrobial Resistance Data. # # Journal of Statistical Software, 104(3), 1-31. # # https://doi.org/10.18637/jss.v104.i03 # # # # Developed at the University of Groningen and the University Medical # # Center Groningen in The Netherlands, in collaboration with many # # colleagues from around the world, see our website. # # # # This R package is free software; you can freely use and distribute # # it for both personal and commercial purposes under the terms of the # # GNU General Public License version 2.0 (GNU GPL-2), as published by # # the Free Software Foundation. # # We created this package for both routine data analysis and academic # # research and it was publicly released in the hope that it will be # # useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. # # # # Visit our website for the full manual and a complete tutorial about # # how to conduct AMR data analysis: https://msberends.github.io/AMR/ # # ==================================================================== # #' Filter Top *n* Microorganisms #' #' This function filters a data set to include only the top *n* microorganisms based on a specified property, such as taxonomic family or genus. For example, it can filter a data set to the top 3 species, or to any species in the top 5 genera, or to the top 3 species in each of the top 5 genera. #' @param x a data frame containing microbial data #' @param n an integer specifying the maximum number of unique values of the `property` to include in the output #' @param property a character string indicating the microorganism property to use for filtering. Must be one of the column names of the [microorganisms] data set: `r vector_or(colnames(microorganisms), sort = FALSE, quotes = TRUE)`. If `NULL`, the raw values from `col_mo` will be used without transformation. #' @param n_for_each an optional integer specifying the maximum number of rows to retain for each value of the selected property. If `NULL`, all rows within the top *n* groups will be included. #' @param col_mo A character string indicating the column in `x` that contains microorganism names or codes. Defaults to the first column of class [`mo`]. Values will be coerced using [as.mo()]. #' @param ... Additional arguments passed on to [mo_property()] when `property` is not `NULL`. #' @details This function is useful for preprocessing data before creating [antibiograms][antibiogram()] or other analyses that require focused subsets of microbial data. For example, it can filter a data set to only include isolates from the top 10 species. #' @export #' @seealso [mo_property()], [as.mo()], [antibiogram()] #' @examples #' # filter to the top 3 species: #' top_n_microorganisms(example_isolates, #' n = 3) #' #' # filter to any species in the top 5 genera: #' top_n_microorganisms(example_isolates, #' n = 5, property = "genus") #' #' # filter to the top 3 species in each of the top 5 genera: #' top_n_microorganisms(example_isolates, #' n = 5, property = "genus", n_for_each = 3) top_n_microorganisms <- function(x, n, property = "fullname", n_for_each = NULL, col_mo = NULL, ...) { meet_criteria(x, allow_class = "data.frame") # also checks dimensions to be >0 meet_criteria(n, allow_class = c("numeric", "integer"), has_length = 1, is_finite = TRUE, is_positive = TRUE) meet_criteria(property, allow_class = "character", has_length = 1, is_in = colnames(AMR::microorganisms)) meet_criteria(n_for_each, allow_class = c("numeric", "integer"), has_length = 1, is_finite = TRUE, is_positive = TRUE, allow_NULL = TRUE) meet_criteria(col_mo, allow_class = "character", has_length = 1, allow_NULL = TRUE, is_in = colnames(x)) if (is.null(col_mo)) { col_mo <- search_type_in_df(x = x, type = "mo", info = TRUE) stop_if(is.null(col_mo), "`col_mo` must be set") } x.bak <- x x[, col_mo] <- as.mo(x[, col_mo, drop = TRUE], keep_synonyms = TRUE) if (is.null(property)) { x$prop_val <- x[[col_mo]] } else { x$prop_val <- mo_property(x[[col_mo]], property = property, ...) } counts <- sort(table(x$prop_val), decreasing = TRUE) n <- as.integer(n) if (length(counts) < n) { n <- length(counts) } count_values <- names(counts)[seq_len(n)] filtered_rows <- which(x$prop_val %in% count_values) if (!is.null(n_for_each)) { n_for_each <- as.integer(n_for_each) filtered_x <- x[filtered_rows, , drop = FALSE] filtered_rows <- do.call( c, lapply(split(filtered_x, filtered_x$prop_val), function(group) { top_values <- names(sort(table(group[[col_mo]]), decreasing = TRUE)[seq_len(n_for_each)]) top_values <- top_values[!is.na(top_values)] which(x[[col_mo]] %in% top_values) }) ) } x.bak[filtered_rows, , drop = FALSE] }