Skip to contents

These functions determine which items in a vector can be considered (the start of) a new episode, based on the argument episode_days. This can be used to determine clinical episodes for any epidemiological analysis. The get_episode() function returns the index number of the episode per group, while the is_new_episode() function returns TRUE for every new get_episode() index, and is thus equal to !duplicated(get_episode(...)).

Usage

get_episode(x, episode_days, ...)

is_new_episode(x, episode_days, ...)

Arguments

x

vector of dates (class Date or POSIXt), will be sorted internally to determine episodes

episode_days

required episode length in days, can also be less than a day or Inf, see Details

...

ignored, only in place to allow future extensions

Value

Details

The functions get_episode() and is_new_episode() differ in this way when setting episode_days to 365:

person_iddateget_episode()is_new_episode()
A2019-01-011TRUE
A2019-03-011FALSE
A2021-01-012TRUE
B2008-01-011TRUE
B2008-01-011FALSE
C2020-01-011TRUE

Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least episode_days days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least episode_days days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.

The first_isolate() function is a wrapper around the is_new_episode() function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.

The dplyr package is not required for these functions to work, but these episode functions do support variable grouping and work conveniently inside dplyr verbs such as filter(), mutate() and summarise().

See also

Examples

# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 100), ]

get_episode(df$date, episode_days = 60) # indices
#>   [1] 22 38 19 20 24 24 22 27 25 44 35 50 43 52 33 36 49 30  6 48 12 44 33 34  9
#>  [26] 46 46  6  3 37 32  8  8 42 47 17 25  2  7 18 47 48 15 12  5 28 46 33 31 39
#>  [51] 11 39 37 41 14  4  7 18 18  9 51 45 30 37 26  1 36 21  3 43  6 26 36 29 29
#>  [76] 11  6 46 49 40 31 13 42 32 26 10 10 17 23 51  5 43 31 50 16 50 50  1 50  6
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#>   [1]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
#>  [13]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE
#>  [25]  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE
#>  [37] FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE
#>  [49]  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE
#>  [61]  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE
#>  [73] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE
#>  [85] FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
#>  [97] FALSE FALSE FALSE FALSE

# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 2 × 46
#>   date       patient   age gender ward     mo           PEN   OXA   FLC   AMX  
#>   <date>     <chr>   <dbl> <chr>  <chr>    <mo>         <sir> <sir> <sir> <sir>
#> 1 2003-01-06 894506     83 M      ICU      B_CRYNB      S     NA    NA    NA   
#> 2 2002-11-28 705451     56 M      Clinical B_STPHY_CONS R     NA    S     NA   
#> # … with 36 more variables: AMC <sir>, AMP <sir>, TZP <sir>, CZO <sir>,
#> #   FEP <sir>, CXM <sir>, FOX <sir>, CTX <sir>, CAZ <sir>, CRO <sir>,
#> #   GEN <sir>, TOB <sir>, AMK <sir>, KAN <sir>, TMP <sir>, SXT <sir>,
#> #   NIT <sir>, FOS <sir>, LNZ <sir>, CIP <sir>, MFX <sir>, VAN <sir>,
#> #   TEC <sir>, TCY <sir>, TGC <sir>, DOX <sir>, ERY <sir>, CLI <sir>,
#> #   AZM <sir>, IPM <sir>, MEM <sir>, MTR <sir>, CHL <sir>, COL <sir>,
#> #   MUP <sir>, RIF <sir>

# the functions also work for less than a day, e.g. to include one per hour:
get_episode(
  c(
    Sys.time(),
    Sys.time() + 60 * 60
  ),
  episode_days = 1 / 24
)
#> [1] 1 2

# \donttest{
if (require("dplyr")) {
  # is_new_episode() can also be used in dplyr verbs to determine patient
  # episodes based on any (combination of) grouping variables:
  df %>%
    mutate(condition = sample(
      x = c("A", "B", "C"),
      size = 100,
      replace = TRUE
    )) %>%
    group_by(patient, condition) %>%
    mutate(new_episode = is_new_episode(date, 365)) %>%
    select(patient, date, condition, new_episode) %>%
    arrange(patient, condition, date)
}
#> # A tibble: 100 × 4
#> # Groups:   patient, condition [99]
#>    patient date       condition new_episode
#>    <chr>   <date>     <chr>     <lgl>      
#>  1 001213  2009-08-03 A         TRUE       
#>  2 069276  2015-06-18 B         TRUE       
#>  3 069276  2015-06-18 C         TRUE       
#>  4 077552  2002-05-14 C         TRUE       
#>  5 1343BD  2016-04-02 B         TRUE       
#>  6 136315  2004-02-02 B         TRUE       
#>  7 164466  2009-10-07 B         TRUE       
#>  8 174209  2011-10-03 A         TRUE       
#>  9 195736  2008-08-28 B         TRUE       
#> 10 223705  2012-07-20 B         TRUE       
#> # … with 90 more rows

if (require("dplyr")) {
  df %>%
    group_by(ward, patient) %>%
    transmute(date,
      patient,
      new_index = get_episode(date, 60),
      new_logical = is_new_episode(date, 60)
    ) %>%
    arrange(patient, ward, date)
}
#> # A tibble: 100 × 5
#> # Groups:   ward, patient [91]
#>    ward       date       patient new_index new_logical
#>    <chr>      <date>     <chr>       <int> <lgl>      
#>  1 Clinical   2009-08-03 001213          1 TRUE       
#>  2 Clinical   2015-06-18 069276          1 TRUE       
#>  3 ICU        2015-06-18 069276          1 TRUE       
#>  4 Clinical   2002-05-14 077552          1 TRUE       
#>  5 Clinical   2016-04-02 1343BD          1 TRUE       
#>  6 Clinical   2004-02-02 136315          1 TRUE       
#>  7 Clinical   2009-10-07 164466          1 TRUE       
#>  8 Outpatient 2011-10-03 174209          1 TRUE       
#>  9 Outpatient 2008-08-28 195736          1 TRUE       
#> 10 Clinical   2012-07-20 223705          1 TRUE       
#> # … with 90 more rows

if (require("dplyr")) {
  df %>%
    group_by(ward) %>%
    summarise(
      n_patients = n_distinct(patient),
      n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
      n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
      n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
    )
}
#> # A tibble: 3 × 5
#>   ward       n_patients n_episodes_365 n_episodes_60 n_episodes_30
#>   <chr>           <int>          <int>         <int>         <int>
#> 1 Clinical           60             12            42            49
#> 2 ICU                24              9            19            20
#> 3 Outpatient          7              5             7             7

# grouping on patients and microorganisms leads to the same
# results as first_isolate() when using 'episode-based':
if (require("dplyr")) {
  x <- df %>%
    filter_first_isolate(
      include_unknown = TRUE,
      method = "episode-based"
    )

  y <- df %>%
    group_by(patient, mo) %>%
    filter(is_new_episode(date, 365)) %>%
    ungroup()

  identical(x, y)
}
#> [1] TRUE

# but is_new_episode() has a lot more flexibility than first_isolate(),
# since you can now group on anything that seems relevant:
if (require("dplyr")) {
  df %>%
    group_by(patient, mo, ward) %>%
    mutate(flag_episode = is_new_episode(date, 365)) %>%
    select(group_vars(.), flag_episode)
}
#> # A tibble: 100 × 4
#> # Groups:   patient, mo, ward [94]
#>    patient mo                ward       flag_episode
#>    <chr>   <mo>              <chr>      <lgl>       
#>  1 326774  B_STRPT_PNMN      Clinical   TRUE        
#>  2 C48417  B_LCTBC_DLBR_LCTS Clinical   TRUE        
#>  3 43F266  B_STPHY_AURS      ICU        TRUE        
#>  4 F3BD65  B_STPHY_EPDR      Outpatient TRUE        
#>  5 AB0003  B_ESCHR_COLI      Clinical   TRUE        
#>  6 001213  B_PSDMN_AERG      Clinical   TRUE        
#>  7 329273  B_STRPT_PNMN      Clinical   TRUE        
#>  8 F35170    UNKNOWN         Clinical   TRUE        
#>  9 451000  B_ESCHR_COLI      Clinical   TRUE        
#> 10 A53312  B_STPHY_EPDR      ICU        TRUE        
#> # … with 90 more rows
# }