# ==================================================================== # # TITLE # # Antimicrobial Resistance (AMR) Analysis # # # # SOURCE # # https://gitlab.com/msberends/AMR # # # # LICENCE # # (c) 2019 Berends MS (m.s.berends@umcg.nl), Luz CF (c.f.luz@umcg.nl) # # # # This R package is free software; you can freely use and distribute # # it for both personal and commercial purposes under the terms of the # # GNU General Public License version 2.0 (GNU GPL-2), as published by # # the Free Software Foundation. # # # # This R package was created for academic research and was publicly # # released in the hope that it will be useful, but it comes WITHOUT # # ANY WARRANTY OR LIABILITY. # # Visit our website for more info: https://msberends.gitlab.io/AMR. # # ==================================================================== # #' @importFrom rlang enquos as_label dots2vars <- function(...) { # this function is to give more informative output about # variable names in count_* and portion_* functions paste( unlist( lapply(enquos(...), function(x) { l <- as_label(x) if (l != ".") { l } else { character(0) } }) ), collapse = ", ") } #' @importFrom dplyr %>% pull all_vars any_vars filter_all funs mutate_all rsi_calc <- function(..., ab_result, minimum = 0, as_percent = FALSE, only_all_tested = FALSE, only_count = FALSE) { data_vars <- dots2vars(...) if (!is.numeric(minimum)) { stop('`minimum` must be numeric', call. = FALSE) } if (!is.logical(as_percent)) { stop('`as_percent` must be logical', call. = FALSE) } if (!is.logical(only_all_tested)) { stop('`only_all_tested` must be logical', call. = FALSE) } dots_df <- ...elt(1) # it needs this evaluation dots <- base::eval(base::substitute(base::alist(...))) if ("also_single_tested" %in% names(dots)) { stop("`also_single_tested` was replaced by `only_all_tested`. Please read Details in the help page (`?portion`) as this may have a considerable impact on your analysis.", call. = FALSE) } ndots <- length(dots) if ("data.frame" %in% class(dots_df)) { # data.frame passed with other columns, like: # septic_patients %>% portion_S(amcl, gent) dots <- as.character(dots) dots <- dots[dots != "."] if (length(dots) == 0 | all(dots == "df")) { # for complete data.frames, like septic_patients %>% select(amcl, gent) %>% portion_S() # and the old rsi function, that has "df" as name of the first parameter x <- dots_df } else { x <- dots_df[, dots] } } else if (ndots == 1) { # only 1 variable passed (can also be data.frame), like: # portion_S(septic_patients$amcl) # septic_patients$amcl %>% portion_S() x <- dots_df } else { # multiple variables passed without pipe, like: # portion_S(septic_patients$amcl, septic_patients$gent) x <- NULL try(x <- as.data.frame(dots), silent = TRUE) if (is.null(x)) { # support for: with(septic_patients, portion_S(amcl, gent)) x <- as.data.frame(rlang::list2(...)) } } if (is.null(x)) { warning("argument is NULL (check if columns exist): returning NA", call. = FALSE) return(NA) } print_warning <- FALSE ab_result <- as.rsi(ab_result) if (is.data.frame(x)) { rsi_integrity_check <- character(0) for (i in 1:ncol(x)) { # check integrity of columns: force rsi class if (!is.rsi(x %>% pull(i))) { rsi_integrity_check <- c(rsi_integrity_check, x %>% pull(i) %>% as.character()) x[, i] <- suppressWarnings(x %>% pull(i) %>% as.rsi()) # warning will be given later print_warning <- TRUE } } if (length(rsi_integrity_check) > 0) { # this will give a warning for invalid results, of all input columns (so only 1 warning) rsi_integrity_check <- as.rsi(rsi_integrity_check) } if (only_all_tested == TRUE) { # THE NUMBER OF ISOLATES WHERE *ALL* ABx ARE S/I/R x <- apply(X = x %>% mutate_all(as.integer), MARGIN = 1, FUN = base::min) numerator <- sum(as.integer(x) %in% as.integer(ab_result), na.rm = TRUE) denominator <- length(x) - sum(is.na(x)) } else { # THE NUMBER OF ISOLATES WHERE *ANY* ABx IS S/I/R other_values <- base::setdiff(c(NA, levels(ab_result)), ab_result) other_values_filter <- base::apply(x, 1, function(y) { base::all(y %in% other_values) & base::any(is.na(y)) }) numerator <- x %>% filter_all(any_vars(. %in% ab_result)) %>% nrow() denominator <- x %>% filter(!other_values_filter) %>% nrow() } } else { # x is not a data.frame if (!is.rsi(x)) { x <- as.rsi(x) print_warning <- TRUE } numerator <- sum(x %in% ab_result, na.rm = TRUE) denominator <- sum(x %in% levels(ab_result), na.rm = TRUE) } if (print_warning == TRUE) { warning("Increase speed by transforming to class `rsi` on beforehand: df %>% mutate_if(is.rsi.eligible, as.rsi)", call. = FALSE) } if (only_count == TRUE) { return(numerator) } if (denominator < minimum) { if (data_vars != "") { data_vars <- paste(" for", data_vars) } warning("Introducing NA: only ", denominator, " results available", data_vars, " (`minimum` was set to ", minimum, ").", call. = FALSE) fraction <- NA } else { fraction <- numerator / denominator } if (as_percent == TRUE) { percent(fraction, force_zero = TRUE) } else { fraction } } #' @importFrom dplyr %>% summarise_if mutate select everything bind_rows #' @importFrom tidyr gather rsi_calc_df <- function(type, # "portion" or "count" data, translate_ab = "name", language = get_locale(), minimum = 30, as_percent = FALSE, combine_SI = TRUE, combine_IR = FALSE, combine_SI_missing = FALSE) { if (!"data.frame" %in% class(data)) { stop(paste0("`", type, "_df` must be called on a data.frame"), call. = FALSE) } if (isTRUE(combine_IR) & isTRUE(combine_SI_missing)) { combine_SI <- FALSE } if (isTRUE(combine_SI) & isTRUE(combine_IR)) { stop("either `combine_SI` or `combine_IR` can be TRUE, not both", call. = FALSE) } if (!any(sapply(data, is.rsi), na.rm = TRUE)) { stop("No columns with class 'rsi' found. See ?as.rsi.", call. = FALSE) } if (as.character(translate_ab) %in% c("TRUE", "official")) { translate_ab <- "name" } get_summaryfunction <- function(int, type) { # look for portion_S, count_S, etc: int_fn <- get(paste0(type, "_", int), envir = asNamespace("AMR")) if (type == "portion") { summ <- summarise_if(.tbl = data, .predicate = is.rsi, .funs = int_fn, minimum = minimum, as_percent = as_percent) } else if (type == "count") { summ <- summarise_if(.tbl = data, .predicate = is.rsi, .funs = int_fn) } summ %>% mutate(interpretation = int) %>% select(interpretation, everything()) } resS <- get_summaryfunction("S", type) resI <- get_summaryfunction("I", type) resR <- get_summaryfunction("R", type) resSI <- get_summaryfunction("SI", type) resIR <- get_summaryfunction("IR", type) data.groups <- group_vars(data) if (isFALSE(combine_SI) & isFALSE(combine_IR)) { res <- bind_rows(resS, resI, resR) %>% mutate(interpretation = factor(interpretation, levels = c("S", "I", "R"), ordered = TRUE)) } else if (isTRUE(combine_IR)) { res <- bind_rows(resS, resIR) %>% mutate(interpretation = factor(interpretation, levels = c("S", "IR"), ordered = TRUE)) } else if (isTRUE(combine_SI)) { res <- bind_rows(resSI, resR) %>% mutate(interpretation = factor(interpretation, levels = c("SI", "R"), ordered = TRUE)) } res <- res %>% gather(antibiotic, value, -interpretation, -data.groups) %>% select(antibiotic, everything()) if (!translate_ab == FALSE) { res <- res %>% mutate(antibiotic = AMR::ab_property(antibiotic, property = translate_ab, language = language)) } res }