# Catalogue of Life # Data retrieved from Encyclopaedia of Life: # https://opendata.eol.org/dataset/catalogue-of-life/ # unzip and extract taxon.tab, then: taxon <- data.table::fread("taxon.tab") # result is over 3.7M rows: library(dplyr) library(AMR) taxon %>% freq(kingdom) # Item Count Percent Cum. Count Cum. Percent # --- ---------- ---------- -------- ----------- ------------- # 1 Animalia 2,225,627 59.1% 2,225,627 59.1% # 2 Plantae 1,177,412 31.3% 3,403,039 90.4% # 3 Fungi 290,145 7.7% 3,693,184 98.1% # 4 Chromista 47,126 1.3% 3,740,310 99.3% # 5 Bacteria 14,478 0.4% 3,754,788 99.7% # 6 Protozoa 6,060 0.2% 3,760,848 99.9% # 7 Viruses 3,827 0.1% 3,764,675 100.0% # 8 Archaea 610 0.0% 3,765,285 100.0% MOs <- taxon %>% # tibble for future transformations as_tibble() %>% filter( # we only want all microorganisms and viruses !kingdom %in% c("Animalia", "Plantae"), # and no entries above genus - they all already have a taxonomic tree !taxonRank %in% c("kingdom", "phylum", "superfamily", "class", "order", "family"), # not all fungi: Aspergillus, Candida, Trichphyton and Pneumocystis are the most important, # so only keep these orders from the fungi: !(kingdom == "Fungi" & !order %in% c("Eurotiales", "Saccharomycetales", "Schizosaccharomycetales", "Onygenales", "Pneumocystales"))) %>% # remove text if it contains 'Not assigned' like phylum in viruses mutate_all(funs(gsub("Not assigned", "", .))) %>% # only latest ref, not original authors mutate(scientificNameAuthorship = trimws(gsub(".*[)] ", "", scientificNameAuthorship)), scientificNameAuthorship = ifelse(grepl(" emend[. ]", scientificNameAuthorship, ignore.case = TRUE), gsub("(.*)emend[. ]+(.*)", "\\2", scientificNameAuthorship, ignore.case = TRUE), scientificNameAuthorship), scientificNameAuthorship = gsub(".", "", scientificNameAuthorship, fixed = TRUE), scientificNameAuthorship = gsub(",? et al", " et al.", scientificNameAuthorship, fixed = FALSE, ignore.case = TRUE), scientificNameAuthorship = gsub("[()]", "", scientificNameAuthorship), # year always preceded by comma scientificNameAuthorship = gsub(" ([0-9]{4})$", ", \\1", scientificNameAuthorship), scientificNameAuthorship = gsub(",,", ",", scientificNameAuthorship, fixed = TRUE), # only first author with *et al.* scientificNameAuthorship = gsub(",.*,", " et al.,", scientificNameAuthorship), scientificNameAuthorship = gsub(" (and|&) .*,", " et al.,", scientificNameAuthorship), scientificNameAuthorship = gsub(", [^0-9]+", ", ", scientificNameAuthorship), scientificNameAuthorship = gsub(", $", "", scientificNameAuthorship) ) # remove non-ASCII characters (not allowed by CRAN) MOs <- MOs %>% lapply(iconv, from = "UTF-8", to = "ASCII//TRANSLIT") %>% as_tibble(stringsAsFactors = FALSE) # split old taxonomic names - they refer to a new `taxonID` with `acceptedNameUsageID` MOs.old <- MOs %>% filter(!is.na(acceptedNameUsageID), scientificNameAuthorship != "") %>% transmute(col_id = taxonID, col_id_new = acceptedNameUsageID, fullname = trimws( gsub("(.*)[(].*", "\\1", stringr::str_replace( string = scientificName, pattern = stringr::fixed(scientificNameAuthorship), replacement = ""))), ref = scientificNameAuthorship) %>% filter(!is.na(fullname)) %>% distinct(fullname, .keep_all = TRUE) %>% arrange(col_id) MOs <- MOs %>% filter(is.na(acceptedNameUsageID)) %>% transmute(col_id = taxonID, fullname = trimws(ifelse(kingdom == "Viruses", paste(specificEpithet, infraspecificEpithet), paste(genus, specificEpithet, infraspecificEpithet))), kingdom, phylum, class, order, family, genus = gsub(":", "", genus), species = specificEpithet, subspecies = infraspecificEpithet, rank = taxonRank, ref = scientificNameAuthorship, species_id = gsub(".*/([a-f0-9]+)", "\\1", furtherInformationURL)) %>% distinct(fullname, .keep_all = TRUE) %>% filter(!grepl("unassigned", fullname, ignore.case = TRUE)) # only old names of species that are in MOs: MOs.old <- MOs.old %>% filter(col_id_new %in% MOs$col_id) MOs <- MOs %>% group_by(kingdom) %>% # abbreviations may be same for genera between kingdoms, # because each abbreviation starts with the the first character of the kingdom mutate(abbr_genus = abbreviate(genus, minlength = 5, use.classes = TRUE, method = "both.sides", strict = FALSE)) %>% ungroup() %>% group_by(genus) %>% # species abbreviations may be the same between genera # because the genus abbreviation is part of the abbreviation mutate(abbr_species = abbreviate(species, minlength = 3, use.classes = FALSE, method = "both.sides")) %>% ungroup() %>% group_by(genus, species) %>% mutate(abbr_subspecies = abbreviate(subspecies, minlength = 3, use.classes = FALSE, method = "both.sides")) %>% ungroup() %>% # remove trailing underscores mutate(mo = gsub("_+$", "", toupper(paste(substr(kingdom, 1, 1), abbr_genus, abbr_species, abbr_subspecies, sep = "_")))) %>% mutate(mo = ifelse(duplicated(.$mo), paste0(mo, "1"), mo)) %>% select(mo, everything(), -abbr_genus, -abbr_species, -abbr_subspecies) # everything distinct? sum(duplicated(MOs$mo)) # add non-taxonomic entries MOs <- MOs %>% bind_rows( # CoNS MOs %>% filter(genus == "Staphylococcus", species == "epidermidis") %>% .[1,] %>% mutate(mo = gsub("EPI", "CNS", mo), col_id = NA_integer_, species = "coagulase negative", fullname = "Coagulase Negative Staphylococcus (CoNS)", ref = NA_character_), # CoPS MOs %>% filter(genus == "Staphylococcus", species == "epidermidis") %>% .[1,] %>% mutate(mo = gsub("EPI", "CPS", mo), col_id = NA_integer_, species = "coagulase positive", fullname = "Coagulase Positive Staphylococcus (CoPS)", ref = NA_character_), # Streptococci groups A, B, C, F, H, K MOs %>% filter(genus == "Streptococcus", species == "agalactiae") %>% .[1,] %>% mutate(mo = gsub("AGA", "GRA", mo), col_id = NA_integer_, species = "group A" , fullname = "Streptococcus group A"), MOs %>% filter(genus == "Streptococcus", species == "dysgalactiae") %>% .[1,] %>% mutate(mo = gsub("DYS", "GRB", mo), col_id = NA_integer_, species = "group B" , fullname = "Streptococcus group B"), MOs %>% filter(genus == "Streptococcus", species == "agalactiae") %>% .[1,] %>% mutate(mo = gsub("AGA", "GRC", mo), col_id = NA_integer_, species = "group C" , fullname = "Streptococcus group C", ref = NA_character_), MOs %>% filter(genus == "Streptococcus", species == "agalactiae") %>% .[1,] %>% mutate(mo = gsub("AGA", "GRD", mo), col_id = NA_integer_, species = "group D" , fullname = "Streptococcus group D", ref = NA_character_), MOs %>% filter(genus == "Streptococcus", species == "agalactiae") %>% .[1,] %>% mutate(mo = gsub("AGA", "GRF", mo), col_id = NA_integer_, species = "group F" , fullname = "Streptococcus group F", ref = NA_character_), MOs %>% filter(genus == "Streptococcus", species == "agalactiae") %>% .[1,] %>% mutate(mo = gsub("AGA", "GRG", mo), col_id = NA_integer_, species = "group F" , fullname = "Streptococcus group G", ref = NA_character_), MOs %>% filter(genus == "Streptococcus", species == "agalactiae") %>% .[1,] %>% mutate(mo = gsub("AGA", "GRH", mo), col_id = NA_integer_, species = "group H" , fullname = "Streptococcus group H", ref = NA_character_), MOs %>% filter(genus == "Streptococcus", species == "agalactiae") %>% .[1,] %>% mutate(mo = gsub("AGA", "GRK", mo), col_id = NA_integer_, species = "group K" , fullname = "Streptococcus group K", ref = NA_character_), # Beta haemolytic Streptococci MOs %>% filter(genus == "Streptococcus", species == "agalactiae") %>% .[1,] %>% mutate(mo = gsub("AGA", "HAE", mo), col_id = NA_integer_, species = "beta-haemolytic" , fullname = "Beta-haemolytic Streptococcus", ref = NA_character_), # unknowns data.frame(mo = "B_GRAMN", col_id = NA_integer_, fullname = "(unknown Gram negatives)", kingdom = "Bacteria", phylum = NA_character_, class = NA_character_, order = NA_character_, family = NA_character_, genus = "(unknown Gram negatives)", species = NA_character_, subspecies = NA_character_, rank = "species", ref = NA_character_, stringsAsFactors = FALSE), data.frame(mo = "B_GRAMP", col_id = NA_integer_, fullname = "(unknown Gram positives)", kingdom = "Bacteria", phylum = NA_character_, class = NA_character_, order = NA_character_, family = NA_character_, genus = "(unknown Gram positives)", species = NA_character_, subspecies = NA_character_, rank = "species", ref = NA_character_, stringsAsFactors = FALSE) ) # save it MOs <- as.data.frame(MOs %>% arrange(mo), stringsAsFactors = FALSE) MOs.old <- as.data.frame(MOs.old, stringsAsFactors = FALSE) class(MOs$mo) <- "mo" saveRDS(MOs, "microorganisms.rds") saveRDS(MOs.old, "microorganisms.old.rds") # on the server: # usethis::use_data(microorganisms, overwrite = TRUE) # usethis::use_data(microorganisms.old, overwrite = TRUE)