# ==================================================================== # # TITLE # # AMR: An R Package for Working with Antimicrobial Resistance Data # # # # SOURCE # # https://github.com/msberends/AMR # # # # CITE AS # # Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C # # (2022). AMR: An R Package for Working with Antimicrobial Resistance # # Data. Journal of Statistical Software, 104(3), 1-31. # # doi:10.18637/jss.v104.i03 # # # # Developed at the University of Groningen and the University Medical # # Center Groningen in The Netherlands, in collaboration with many # # colleagues from around the world, see our website. # # # # This R package is free software; you can freely use and distribute # # it for both personal and commercial purposes under the terms of the # # GNU General Public License version 2.0 (GNU GPL-2), as published by # # the Free Software Foundation. # # We created this package for both routine data analysis and academic # # research and it was publicly released in the hope that it will be # # useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. # # # # Visit our website for the full manual and a complete tutorial about # # how to conduct AMR data analysis: https://msberends.github.io/AMR/ # # ==================================================================== # expect_equal(proportion_R(example_isolates$AMX), resistance(example_isolates$AMX)) expect_equal(proportion_SI(example_isolates$AMX), susceptibility(example_isolates$AMX)) # AMX resistance in `example_isolates` expect_equal(proportion_R(example_isolates$AMX), 0.5955556, tolerance = 0.0001) expect_equal(proportion_I(example_isolates$AMX), 0.002222222, tolerance = 0.0001) expect_equal(sir_confidence_interval(example_isolates$AMX)[1], 0.5688204, tolerance = 0.0001) expect_equal(sir_confidence_interval(example_isolates$AMX)[2], 0.6218738, tolerance = 0.0001) expect_equal( 1 - proportion_R(example_isolates$AMX) - proportion_I(example_isolates$AMX), proportion_S(example_isolates$AMX) ) expect_equal( proportion_R(example_isolates$AMX) + proportion_I(example_isolates$AMX), proportion_IR(example_isolates$AMX) ) expect_equal( proportion_S(example_isolates$AMX) + proportion_I(example_isolates$AMX), proportion_SI(example_isolates$AMX) ) if (AMR:::pkg_is_available("dplyr", min_version = "1.0.0", also_load = TRUE)) { expect_equal(example_isolates %>% proportion_SI(AMC), 0.7626397, tolerance = 0.0001 ) expect_equal(example_isolates %>% proportion_SI(AMC, GEN), 0.9408, tolerance = 0.0001 ) expect_equal(example_isolates %>% proportion_SI(AMC, GEN, only_all_tested = TRUE), 0.9382647, tolerance = 0.0001 ) # percentages expect_equal( example_isolates %>% group_by(ward) %>% summarise( R = proportion_R(CIP, as_percent = TRUE), I = proportion_I(CIP, as_percent = TRUE), S = proportion_S(CIP, as_percent = TRUE), n = n_sir(CIP), total = n() ) %>% pull(n) %>% sum(), 1409 ) # count of cases expect_equal( example_isolates %>% group_by(ward) %>% summarise( cipro_p = proportion_SI(CIP, as_percent = TRUE), cipro_n = n_sir(CIP), genta_p = proportion_SI(GEN, as_percent = TRUE), genta_n = n_sir(GEN), combination_p = proportion_SI(CIP, GEN, as_percent = TRUE), combination_n = n_sir(CIP, GEN) ) %>% pull(combination_n), c(1181, 577, 116) ) # proportion_df expect_equal( example_isolates %>% select(AMX) %>% proportion_df() %>% pull(value), c( example_isolates$AMX %>% proportion_SI(), example_isolates$AMX %>% proportion_R() ) ) expect_equal( example_isolates %>% select(AMX) %>% proportion_df(combine_SI = FALSE) %>% pull(value), c( example_isolates$AMX %>% proportion_S(), example_isolates$AMX %>% proportion_I(), example_isolates$AMX %>% proportion_R() ) ) # expect_warning(example_isolates %>% group_by(ward) %>% summarise(across(KAN, sir_confidence_interval))) } # expect_warning(proportion_R(as.character(example_isolates$AMC))) # expect_warning(proportion_S(as.character(example_isolates$AMC))) # expect_warning(proportion_S(as.character(example_isolates$AMC, example_isolates$GEN))) # expect_warning(n_sir(as.character(example_isolates$AMC, example_isolates$GEN))) expect_equal( suppressWarnings(n_sir(as.character( example_isolates$AMC, example_isolates$GEN ))), 1879 ) # check for errors expect_error(proportion_IR("test", minimum = "test")) expect_error(proportion_IR("test", as_percent = "test")) expect_error(proportion_I("test", minimum = "test")) expect_error(proportion_I("test", as_percent = "test")) expect_error(proportion_S("test", minimum = "test")) expect_error(proportion_S("test", as_percent = "test")) expect_error(proportion_S("test", also_single_tested = TRUE)) # check too low amount of isolates expect_identical( suppressWarnings(proportion_R(example_isolates$AMX, minimum = nrow(example_isolates) + 1)), NA_real_ ) expect_identical( suppressWarnings(proportion_I(example_isolates$AMX, minimum = nrow(example_isolates) + 1)), NA_real_ ) expect_identical( suppressWarnings(proportion_S(example_isolates$AMX, minimum = nrow(example_isolates) + 1)), NA_real_ ) # warning for speed loss # expect_warning(proportion_R(as.character(example_isolates$GEN))) # expect_warning(proportion_I(as.character(example_isolates$GEN))) # expect_warning(proportion_S(example_isolates$AMC, as.character(example_isolates$GEN))) expect_error(proportion_df(c("A", "B", "C"))) expect_error(proportion_df(example_isolates[, "date", drop = TRUE]))