Skip to contents

These functions determine which items in a vector can be considered (the start of) a new episode, based on the argument episode_days. This can be used to determine clinical episodes for any epidemiological analysis. The get_episode() function returns the index number of the episode per group, while the is_new_episode() function returns values TRUE/FALSE to indicate whether an item in a vector is the start of a new episode.

Usage

get_episode(x, episode_days, ...)

is_new_episode(x, episode_days, ...)

Arguments

x

vector of dates (class Date or POSIXt), will be sorted internally to determine episodes

episode_days

required episode length in days, can also be less than a day or Inf, see Details

...

ignored, only in place to allow future extensions

Value

  • get_episode(): a double vector

  • is_new_episode(): a logical vector

Details

Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least episode_days days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least episode_days days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.

The first_isolate() function is a wrapper around the is_new_episode() function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.

The dplyr package is not required for these functions to work, but these functions do support variable grouping and work conveniently inside dplyr verbs such as filter(), mutate() and summarise().

See also

Examples

# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 200), ]

get_episode(df$date, episode_days = 60) # indices
#>   [1] 32 48 50 13 52 47 10 39 18 45 31 54  2 17 55 46 26 24 22 39 41 52 30 56 49
#>  [26] 51 26 61 52 53 13 57 15 16 52 57 48 63  6 45 13 63 60 20 27 47 56  9 39 11
#>  [51] 31  8 53 17  5 61 67 64 40  3 35 27 31 32 13 67 17 37  4 53 67 58 19 28 46
#>  [76]  8 49 14 46 59 63  2 58 40 28  2 42  3  1  7 48 16 63 19  5  1 25 32 52 45
#> [101] 17 46 12 44  6 62 24 11 66 33 63 13 22 43 62 48 32 27 19 23  4 54  8 57 11
#> [126] 65 65 45 17 64 33 55 24 64 40 28 67 18 40 35 12 66 60 57 22 37 29 43 63  9
#> [151] 22 57 58  9 57  9 22  4  7 31 25 67 26 37 59 41 23 36 10 59 22  1 43 31 11
#> [176] 39 10 11  4 62 66 16 34  9 44 66  9 34 34 20 37 11 29  9 53 45 38 21 50  4
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#>   [1] FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE
#>  [13]  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE
#>  [25]  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE
#>  [37] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE
#>  [49] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE
#>  [61] FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
#>  [73]  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE
#>  [85] FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE
#>  [97]  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE
#> [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE
#> [121]  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE
#> [133]  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
#> [145] FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE
#> [157] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE
#> [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
#> [181] FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE
#> [193] FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE

# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 2 × 46
#>   date       patient   age gender ward     mo           PEN   OXA   FLC   AMX  
#>   <date>     <chr>   <dbl> <chr>  <chr>    <mo>         <rsi> <rsi> <rsi> <rsi>
#> 1 2002-08-19 A49852     70 M      Clinical B_ESCHR_COLI R     NA    NA    NA   
#> 2 2002-08-31 149442     80 F      ICU      B_STPHY_AURS R     NA    S     R    
#> # … with 36 more variables: AMC <rsi>, AMP <rsi>, TZP <rsi>, CZO <rsi>,
#> #   FEP <rsi>, CXM <rsi>, FOX <rsi>, CTX <rsi>, CAZ <rsi>, CRO <rsi>,
#> #   GEN <rsi>, TOB <rsi>, AMK <rsi>, KAN <rsi>, TMP <rsi>, SXT <rsi>,
#> #   NIT <rsi>, FOS <rsi>, LNZ <rsi>, CIP <rsi>, MFX <rsi>, VAN <rsi>,
#> #   TEC <rsi>, TCY <rsi>, TGC <rsi>, DOX <rsi>, ERY <rsi>, CLI <rsi>,
#> #   AZM <rsi>, IPM <rsi>, MEM <rsi>, MTR <rsi>, CHL <rsi>, COL <rsi>,
#> #   MUP <rsi>, RIF <rsi>

# the functions also work for less than a day, e.g. to include one per hour:
get_episode(c(
  Sys.time(),
  Sys.time() + 60 * 60
),
episode_days = 1 / 24
)
#> [1] 1 2

# \donttest{
if (require("dplyr")) {
  # is_new_episode() can also be used in dplyr verbs to determine patient
  # episodes based on any (combination of) grouping variables:
  df %>%
    mutate(condition = sample(
      x = c("A", "B", "C"),
      size = 200,
      replace = TRUE
    )) %>%
    group_by(condition) %>%
    mutate(new_episode = is_new_episode(date, 365)) %>%
    select(patient, date, condition, new_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   condition [3]
#>    patient date       condition new_episode
#>    <chr>   <date>     <chr>     <lgl>      
#>  1 668048  2009-06-29 A         FALSE      
#>  2 964129  2013-09-11 B         FALSE      
#>  3 C06794  2013-12-18 A         FALSE      
#>  4 C21760  2004-12-28 B         FALSE      
#>  5 E225B0  2014-07-22 B         FALSE      
#>  6 970832  2013-07-09 C         TRUE       
#>  7 05B00F  2004-05-11 B         FALSE      
#>  8 690B42  2011-06-16 B         TRUE       
#>  9 740354  2005-10-31 A         FALSE      
#> 10 431647  2012-10-04 C         FALSE      
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward, patient) %>%
    transmute(date,
      patient,
      new_index = get_episode(date, 60),
      new_logical = is_new_episode(date, 60)
    )
}
#> # A tibble: 200 × 5
#> # Groups:   ward, patient [188]
#>    ward       date       patient new_index new_logical
#>    <chr>      <date>     <chr>       <dbl> <lgl>      
#>  1 Clinical   2009-06-29 668048          1 TRUE       
#>  2 Clinical   2013-09-11 964129          1 TRUE       
#>  3 Clinical   2013-12-18 C06794          1 TRUE       
#>  4 ICU        2004-12-28 C21760          1 TRUE       
#>  5 Outpatient 2014-07-22 E225B0          1 TRUE       
#>  6 Clinical   2013-07-09 970832          1 TRUE       
#>  7 ICU        2004-05-11 05B00F          1 TRUE       
#>  8 Clinical   2011-06-16 690B42          1 TRUE       
#>  9 Outpatient 2005-10-31 740354          1 TRUE       
#> 10 Clinical   2012-10-04 431647          1 TRUE       
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward) %>%
    summarise(
      n_patients = n_distinct(patient),
      n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
      n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
      n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
    )
}
#> # A tibble: 3 × 5
#>   ward       n_patients n_episodes_365 n_episodes_60 n_episodes_30
#>   <chr>           <int>          <int>         <int>         <int>
#> 1 Clinical          117             14            54            77
#> 2 ICU                61             12            35            46
#> 3 Outpatient         10              7             9             9
if (require("dplyr")) {

  # grouping on patients and microorganisms leads to the same
  # results as first_isolate() when using 'episode-based':
  x <- df %>%
    filter_first_isolate(
      include_unknown = TRUE,
      method = "episode-based"
    )

  y <- df %>%
    group_by(patient, mo) %>%
    filter(is_new_episode(date, 365)) %>%
    ungroup()

  identical(x, y)
}
#> Including isolates from ICU.
#> [1] FALSE
if (require("dplyr")) {

  # but is_new_episode() has a lot more flexibility than first_isolate(),
  # since you can now group on anything that seems relevant:
  df %>%
    group_by(patient, mo, ward) %>%
    mutate(flag_episode = is_new_episode(date, 365)) %>%
    select(group_vars(.), flag_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   patient, mo, ward [191]
#>    patient mo           ward       flag_episode
#>    <chr>   <mo>         <chr>      <lgl>       
#>  1 668048  B_ESCHR_COLI Clinical   TRUE        
#>  2 964129  B_ESCHR_COLI Clinical   TRUE        
#>  3 C06794  B_STPHY_HMNS Clinical   TRUE        
#>  4 C21760  B_STPHY_EPDR ICU        TRUE        
#>  5 E225B0  B_ESCHR_COLI Outpatient TRUE        
#>  6 970832  B_STRPT_DYSG Clinical   TRUE        
#>  7 05B00F  F_CANDD_ALBC ICU        TRUE        
#>  8 690B42  B_ESCHR_COLI Clinical   TRUE        
#>  9 740354  B_STPHY_CONS Outpatient TRUE        
#> 10 431647  B_STPHY_CONS Clinical   TRUE        
#> # … with 190 more rows
# }