# ==================================================================== # # TITLE # # Antimicrobial Resistance (AMR) Analysis # # # # AUTHORS # # Berends MS (m.s.berends@umcg.nl), Luz CF (c.f.luz@umcg.nl) # # # # LICENCE # # This program is free software; you can redistribute it and/or modify # # it under the terms of the GNU General Public License version 2.0, # # as published by the Free Software Foundation. # # # # This program is distributed in the hope that it will be useful, # # but WITHOUT ANY WARRANTY; without even the implied warranty of # # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # # GNU General Public License for more details. # # ==================================================================== # #' Key antibiotics for first \emph{weighted} isolates #' #' These function can be used to determine first isolates (see \code{\link{first_isolate}}). Using key antibiotics to determine first isolates is more reliable than without key antibiotics. These selected isolates will then be called first \emph{weighted} isolates. #' @param tbl table with antibiotics coloms, like \code{amox} and \code{amcl}. #' @param x,y characters to compare #' @inheritParams first_isolate #' @param universal_1,universal_2,universal_3,universal_4,universal_5,universal_6 column names of \strong{broad-spectrum} antibiotics, case-insensitive #' @param GramPos_1,GramPos_2,GramPos_3,GramPos_4,GramPos_5,GramPos_6 column names of antibiotics for \strong{Gram positives}, case-insensitive #' @param GramNeg_1,GramNeg_2,GramNeg_3,GramNeg_4,GramNeg_5,GramNeg_6 column names of antibiotics for \strong{Gram negatives}, case-insensitive #' @param warnings give warning about missing antibiotic columns, they will anyway be ignored #' @details The function \code{key_antibiotics} returns a character vector with 12 antibiotic results for every isolate. These isolates can then be compared using \code{key_antibiotics_equal}, to check if two isolates have generally the same antibiogram. Missing and invalid values are replaced with a dot (\code{"."}). The \code{\link{first_isolate}} function only uses this function on the same microbial species from the same patient. Using this, an MRSA will be included after a susceptible \emph{S. aureus} (MSSA) found within the same episode (see \code{episode} parameter of \code{\link{first_isolate}}). Without key antibiotic comparison it wouldn't. #' #' At default, the antibiotics that are used for \strong{Gram positive bacteria} are (colum names): \cr #' \code{"amox"}, \code{"amcl"}, \code{"cfur"}, \code{"pita"}, \code{"cipr"}, \code{"trsu"} (until here is universal), \code{"vanc"}, \code{"teic"}, \code{"tetr"}, \code{"eryt"}, \code{"oxac"}, \code{"rifa"}. #' #' At default, the antibiotics that are used for \strong{Gram negative bacteria} are (colum names): \cr #' \code{"amox"}, \code{"amcl"}, \code{"cfur"}, \code{"pita"}, \code{"cipr"}, \code{"trsu"} (until here is universal), \code{"gent"}, \code{"tobr"}, \code{"coli"}, \code{"cfot"}, \code{"cfta"}, \code{"mero"}. #' #' #' The function \code{key_antibiotics_equal} checks the characters returned by \code{key_antibiotics} for equality, and returns a logical vector. #' @inheritSection first_isolate Key antibiotics #' @rdname key_antibiotics #' @export #' @importFrom dplyr %>% mutate if_else #' @seealso \code{\link{first_isolate}} #' @examples #' \dontrun{ #' # set key antibiotics to a new variable #' tbl$keyab <- key_antibiotics(tbl) #' #' # add regular first isolates #' tbl$first_isolate <- #' first_isolate(tbl) #' #' # add first WEIGHTED isolates using key antibiotics #' tbl$first_isolate_weighed <- #' first_isolate(tbl, #' col_keyantibiotics = 'keyab') #' } #' #' # output of the `key_antibiotics` function could be like this: #' strainA <- "SSSRR.S.R..S" #' strainB <- "SSSIRSSSRSSS" #' #' key_antibiotics_equal(strainA, strainB) #' # TRUE, because I is ignored (as are missing values) #' #' key_antibiotics_equal(strainA, strainB, ignore_I = FALSE) #' # FALSE, because I is not ignored and so the 4th value differs key_antibiotics <- function(tbl, col_bactid = "bactid", universal_1 = "amox", universal_2 = "amcl", universal_3 = "cfur", universal_4 = "pita", universal_5 = "cipr", universal_6 = "trsu", GramPos_1 = "vanc", GramPos_2 = "teic", GramPos_3 = "tetr", GramPos_4 = "eryt", GramPos_5 = "oxac", GramPos_6 = "rifa", GramNeg_1 = "gent", GramNeg_2 = "tobr", GramNeg_3 = "coli", GramNeg_4 = "cfot", GramNeg_5 = "cfta", GramNeg_6 = "mero", warnings = TRUE) { if (!col_bactid %in% colnames(tbl)) { stop('Column ', col_bactid, ' not found.', call. = FALSE) } # check columns col.list <- c(universal_1, universal_2, universal_3, universal_4, universal_5, universal_6, GramPos_1, GramPos_2, GramPos_3, GramPos_4, GramPos_5, GramPos_6, GramNeg_1, GramNeg_2, GramNeg_3, GramNeg_4, GramNeg_5, GramNeg_6) col.list <- check_available_columns(tbl = tbl, col.list = col.list, info = warnings) universal_1 <- col.list[universal_1] universal_2 <- col.list[universal_2] universal_3 <- col.list[universal_3] universal_4 <- col.list[universal_4] universal_5 <- col.list[universal_5] universal_6 <- col.list[universal_6] GramPos_1 <- col.list[GramPos_1] GramPos_2 <- col.list[GramPos_2] GramPos_3 <- col.list[GramPos_3] GramPos_4 <- col.list[GramPos_4] GramPos_5 <- col.list[GramPos_5] GramPos_6 <- col.list[GramPos_6] GramNeg_1 <- col.list[GramNeg_1] GramNeg_2 <- col.list[GramNeg_2] GramNeg_3 <- col.list[GramNeg_3] GramNeg_4 <- col.list[GramNeg_4] GramNeg_5 <- col.list[GramNeg_5] GramNeg_6 <- col.list[GramNeg_6] universal <- c(universal_1, universal_2, universal_3, universal_4, universal_5, universal_6) gram_positive = c(universal, GramPos_1, GramPos_2, GramPos_3, GramPos_4, GramPos_5, GramPos_6) gram_positive <- gram_positive[!is.na(gram_positive)] gram_negative = c(universal, GramNeg_1, GramNeg_2, GramNeg_3, GramNeg_4, GramNeg_5, GramNeg_6) gram_negative <- gram_negative[!is.na(gram_negative)] # join microorganisms tbl <- tbl %>% left_join_microorganisms(col_bactid) tbl$key_ab <- NA_character_ # Gram + tbl <- tbl %>% mutate(key_ab = if_else(gramstain %like% '^Positive ', apply(X = tbl[, gram_positive], MARGIN = 1, FUN = function(x) paste(x, collapse = "")), key_ab)) # Gram - tbl <- tbl %>% mutate(key_ab = if_else(gramstain %like% '^Negative ', apply(X = tbl[, gram_negative], MARGIN = 1, FUN = function(x) paste(x, collapse = "")), key_ab)) # format key_abs <- tbl %>% pull(key_ab) %>% gsub('(NA|NULL)', '.', .) %>% gsub('[^SIR]', '.', ., ignore.case = TRUE) key_abs } #' @importFrom dplyr progress_estimated %>% #' @rdname key_antibiotics #' @export key_antibiotics_equal <- function(x, y, type = c("keyantibiotics", "points"), ignore_I = TRUE, points_threshold = 2, info = FALSE) { # x is active row, y is lag type <- type[1] if (length(x) != length(y)) { stop('Length of `x` and `y` must be equal.') } result <- logical(length(x)) if (type == "keyantibiotics") { if (ignore_I == TRUE) { # evaluation using regular expression will treat '.' as any character # so I is actually ignored then x <- gsub('I', '.', x, ignore.case = TRUE) y <- gsub('I', '.', y, ignore.case = TRUE) } for (i in 1:length(x)) { x_split <- strsplit(x[i], "")[[1]] y_split <- strsplit(y[i], "")[[1]] y_split[x_split == "."] <- "." x_split[y_split == "."] <- "." x_checkfor <- paste(x_split, collapse = "") y_checkfor <- paste(y_split, collapse = "") result[i] <- nchar(x[i]) == nchar(y[i]) & (x_checkfor %like% y_checkfor | y_checkfor %like% x_checkfor) } return(result) } else { if (type != 'points') { stop('`', type, '` is not a valid value for type, must be "points" or "keyantibiotics". See ?first_isolate.') } if (info == TRUE) { p <- dplyr::progress_estimated(length(x)) } for (i in 1:length(x)) { if (info == TRUE) { p$tick()$print() } if (is.na(x[i])) { x[i] <- '' } if (is.na(y[i])) { y[i] <- '' } if (nchar(x[i]) != nchar(y[i])) { result[i] <- FALSE } else if (x[i] == '' & y[i] == '') { result[i] <- TRUE } else { x2 <- strsplit(x[i], "")[[1]] y2 <- strsplit(y[i], "")[[1]] # count points for every single character: # - no change is 0 points # - I <-> S|R is 0.5 point # - S|R <-> R|S is 1 point # use the levels of as.rsi (S = 1, I = 2, R = 3) suppressWarnings(x2 <- x2 %>% as.rsi() %>% as.double()) suppressWarnings(y2 <- y2 %>% as.rsi() %>% as.double()) points <- (x2 - y2) %>% abs() %>% sum(na.rm = TRUE) result[i] <- ((points / 2) >= points_threshold) } } if (info == TRUE) { cat('\n') } result } }