Skip to contents

These functions can be used for generating random MIC values and disk diffusion diameters, for AMR data analysis practice. By providing a microorganism and antimicrobial agent, the generated results will reflect reality as much as possible.

Usage

random_mic(size = NULL, mo = NULL, ab = NULL, ...)

random_disk(size = NULL, mo = NULL, ab = NULL, ...)

random_rsi(size = NULL, prob_RSI = c(0.33, 0.33, 0.33), ...)

Arguments

size

desired size of the returned vector. If used in a data.frame call or dplyr verb, will get the current (group) size if left blank.

mo

any character that can be coerced to a valid microorganism code with as.mo()

ab

any character that can be coerced to a valid antimicrobial agent code with as.ab()

...

ignored, only in place to allow future extensions

prob_RSI

a vector of length 3: the probabilities for "R" (1st value), "S" (2nd value) and "I" (3rd value)

Value

class mic for random_mic() (see as.mic()) and class disk for random_disk() (see as.disk())

Details

The base R function sample() is used for generating values.

Generated values are based on the EUCAST 2022 guideline as implemented in the rsi_translation data set. To create specific generated values per bug or drug, set the mo and/or ab argument.

Examples

random_mic(25)
#> Class 'mic'
#>  [1] 0.125  0.001  1      16     0.025  0.002  0.125  2      128    0.01  
#> [11] 256    64     256    0.005  2      32     0.0625 8      0.025  0.25  
#> [21] 0.005  0.01   0.002  128    0.001 
random_disk(25)
#> Error in seq.default(from = as.integer(min(df$breakpoint_R)/1.25), to = as.integer(max(df$breakpoint_S) *     1.25), by = 1): 'from' must be a finite number
random_rsi(25)
#> Class 'rsi'
#>  [1] I I R S S S S R I S S I I I S S I I R R R R S I I

# \donttest{
# make the random generation more realistic by setting a bug and/or drug:
random_mic(25, "Klebsiella pneumoniae") # range 0.0625-64
#> Class 'mic'
#>  [1] 0.0625 32     2      >=128  0.25   0.25   0.125  64     4      4     
#> [11] 0.01   0.5    1      >=128  0.25   8      8      64     32     0.25  
#> [21] 0.002  0.01   0.005  0.005  0.005 
random_mic(25, "Klebsiella pneumoniae", "meropenem") # range 0.0625-16
#> Class 'mic'
#>  [1] 4      >=32   4      0.5    4      4      <=0.25 <=0.25 >=32   >=32  
#> [11] 1      16     >=32   >=32   1      1      0.5    >=32   16     4     
#> [21] <=0.25 2      2      2      2     
random_mic(25, "Streptococcus pneumoniae", "meropenem") # range 0.0625-4
#> Class 'mic'
#>  [1] 0.5     0.0625  4       4       0.125   <=0.025 0.125   2       4      
#> [10] 0.0625  <=0.025 0.0625  2       2       8       0.0625  1       <=0.025
#> [19] <=0.025 0.25    4       <=0.025 <=0.025 0.25    0.5    

random_disk(25, "Klebsiella pneumoniae") # range 8-50
#> Class 'disk'
#>  [1] 18 30 42 26 20 26 42 10 19 34 48 49 34 49 27 29 44 32  9 17 32 13 25 40 18
random_disk(25, "Klebsiella pneumoniae", "ampicillin") # range 11-17
#> Class 'disk'
#>  [1] 14 13 17 17 14 15 13 16 13 15 11 13 15 13 16 15 12 15 17 14 16 13 13 12 15
random_disk(25, "Streptococcus pneumoniae", "ampicillin") # range 12-27
#> Class 'disk'
#>  [1] 26 17 19 16 25 23 19 26 16 15 22 16 22 24 20 26 26 23 22 26 15 25 17 19 15
# }