Skip to contents

These functions determine which items in a vector can be considered (the start of) a new episode, based on the argument episode_days. This can be used to determine clinical episodes for any epidemiological analysis. The get_episode() function returns the index number of the episode per group, while the is_new_episode() function returns values TRUE/FALSE to indicate whether an item in a vector is the start of a new episode.

Usage

get_episode(x, episode_days, ...)

is_new_episode(x, episode_days, ...)

Arguments

x

vector of dates (class Date or POSIXt), will be sorted internally to determine episodes

episode_days

required episode length in days, can also be less than a day or Inf, see Details

...

ignored, only in place to allow future extensions

Value

  • get_episode(): a double vector

  • is_new_episode(): a logical vector

Details

Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least episode_days days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least episode_days days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.

The first_isolate() function is a wrapper around the is_new_episode() function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.

The dplyr package is not required for these functions to work, but these functions do support variable grouping and work conveniently inside dplyr verbs such as filter(), mutate() and summarise().

See also

Examples

# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 200), ]

get_episode(df$date, episode_days = 60) # indices
#>   [1] 42 57 32 28 63 47 37  2 59 51 13 12  5 50 32 50 60 15 52 59 43 39 10 19 54
#>  [26] 31 58  4 30 24  4  2 19 55 60 49 55 42 63 60 38 53 35 13 57 29 60 36 19 19
#>  [51] 22  7 11 19 28 15  9  9 16 52 55 33 55  2 11 55 45 62 38 59 57 13 27 30 40
#>  [76] 30 37 63 45 35 14  9 50  1 44  6 63  4 30 41 55 55 14 24 10 37 30 31 38 38
#> [101] 16 29 17 23 54 15 40 24 15 52 62 10 58 40 60  3 28 28 51 17 59 37 13 51 26
#> [126] 38 48 13 27  8  8 25 28 30  8 33  6 31 40  8 57 59 25 61  2 52 60  1 21 36
#> [151] 23 15 11 32 21  3 46 42 15 48 61 19 27 34 32 51 47 27 55  4 63 40 54 11  8
#> [176] 13 53 20 31 21 19 31 35 56 13  2 34 20 46 35 41 13 61 31 50  3 13  8 18 40
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#>   [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE
#>  [13]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE
#>  [25]  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE
#>  [37]  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE
#>  [49]  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE
#>  [61] FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE
#>  [73]  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE
#>  [85]  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE
#>  [97] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
#> [109]  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
#> [121] FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
#> [133] FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE
#> [145] FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE
#> [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE
#> [169] FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE
#> [181] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE
#> [193] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE

# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 3 × 46
#>   date       patient   age gender ward      mo           PEN   OXA   FLC   AMX  
#>   <date>     <chr>   <dbl> <chr>  <chr>     <mo>         <rsi> <rsi> <rsi> <rsi>
#> 1 2002-07-16 241328     78 M      Outpatie… B_STPHY_CONS R     NA    S     R    
#> 2 2002-07-15 C42193     84 M      ICU       B_STPHY_HMNS R     NA    R     R    
#> 3 2002-08-14 785317     51 F      ICU       B_ESCHR_COLI R     NA    NA    NA   
#> # … with 36 more variables: AMC <rsi>, AMP <rsi>, TZP <rsi>, CZO <rsi>,
#> #   FEP <rsi>, CXM <rsi>, FOX <rsi>, CTX <rsi>, CAZ <rsi>, CRO <rsi>,
#> #   GEN <rsi>, TOB <rsi>, AMK <rsi>, KAN <rsi>, TMP <rsi>, SXT <rsi>,
#> #   NIT <rsi>, FOS <rsi>, LNZ <rsi>, CIP <rsi>, MFX <rsi>, VAN <rsi>,
#> #   TEC <rsi>, TCY <rsi>, TGC <rsi>, DOX <rsi>, ERY <rsi>, CLI <rsi>,
#> #   AZM <rsi>, IPM <rsi>, MEM <rsi>, MTR <rsi>, CHL <rsi>, COL <rsi>,
#> #   MUP <rsi>, RIF <rsi>

# the functions also work for less than a day, e.g. to include one per hour:
get_episode(c(
  Sys.time(),
  Sys.time() + 60 * 60
),
episode_days = 1 / 24
)
#> [1] 1 2

# \donttest{
if (require("dplyr")) {
  # is_new_episode() can also be used in dplyr verbs to determine patient
  # episodes based on any (combination of) grouping variables:
  df %>%
    mutate(condition = sample(
      x = c("A", "B", "C"),
      size = 200,
      replace = TRUE
    )) %>%
    group_by(condition) %>%
    mutate(new_episode = is_new_episode(date, 365)) %>%
    select(patient, date, condition, new_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   condition [3]
#>    patient date       condition new_episode
#>    <chr>   <date>     <chr>     <lgl>      
#>  1 616685  2012-12-27 B         FALSE      
#>  2 A79917  2016-05-21 A         FALSE      
#>  3 3F562C  2009-05-25 B         FALSE      
#>  4 945BD5  2008-05-06 B         FALSE      
#>  5 5DB1C8  2017-12-28 A         FALSE      
#>  6 082622  2014-02-08 A         FALSE      
#>  7 77FC41  2010-11-13 A         FALSE      
#>  8 077552  2002-05-14 A         FALSE      
#>  9 D08278  2016-11-18 C         FALSE      
#> 10 5D1690  2014-12-27 A         TRUE       
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward, patient) %>%
    transmute(date,
      patient,
      new_index = get_episode(date, 60),
      new_logical = is_new_episode(date, 60)
    )
}
#> # A tibble: 200 × 5
#> # Groups:   ward, patient [182]
#>    ward       date       patient new_index new_logical
#>    <chr>      <date>     <chr>       <dbl> <lgl>      
#>  1 Clinical   2012-12-27 616685          1 TRUE       
#>  2 Clinical   2016-05-21 A79917          1 TRUE       
#>  3 Clinical   2009-05-25 3F562C          1 TRUE       
#>  4 Clinical   2008-05-06 945BD5          1 TRUE       
#>  5 Clinical   2017-12-28 5DB1C8          1 TRUE       
#>  6 ICU        2014-02-08 082622          1 TRUE       
#>  7 Outpatient 2010-11-13 77FC41          1 TRUE       
#>  8 Clinical   2002-05-14 077552          1 TRUE       
#>  9 ICU        2016-11-18 D08278          1 TRUE       
#> 10 Outpatient 2014-12-27 5D1690          1 TRUE       
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward) %>%
    summarise(
      n_patients = n_distinct(patient),
      n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
      n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
      n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
    )
}
#> # A tibble: 3 × 5
#>   ward       n_patients n_episodes_365 n_episodes_60 n_episodes_30
#>   <chr>           <int>          <int>         <int>         <int>
#> 1 Clinical          107             14            48            68
#> 2 ICU                57             13            38            44
#> 3 Outpatient         18              8            16            16
if (require("dplyr")) {

  # grouping on patients and microorganisms leads to the same
  # results as first_isolate() when using 'episode-based':
  x <- df %>%
    filter_first_isolate(
      include_unknown = TRUE,
      method = "episode-based"
    )

  y <- df %>%
    group_by(patient, mo) %>%
    filter(is_new_episode(date, 365)) %>%
    ungroup()

  identical(x, y)
}
#> Including isolates from ICU.
#> [1] TRUE
if (require("dplyr")) {

  # but is_new_episode() has a lot more flexibility than first_isolate(),
  # since you can now group on anything that seems relevant:
  df %>%
    group_by(patient, mo, ward) %>%
    mutate(flag_episode = is_new_episode(date, 365)) %>%
    select(group_vars(.), flag_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   patient, mo, ward [192]
#>    patient mo            ward       flag_episode
#>    <chr>   <mo>          <chr>      <lgl>       
#>  1 616685  B_STPHY_EPDR  Clinical   TRUE        
#>  2 A79917  B_ENTRC_FACM  Clinical   TRUE        
#>  3 3F562C  B_STPHY_CONS  Clinical   TRUE        
#>  4 945BD5  B_ENTRBC_CLOC Clinical   TRUE        
#>  5 5DB1C8  B_STPHY_HMNS  Clinical   TRUE        
#>  6 082622  B_ESCHR_COLI  ICU        TRUE        
#>  7 77FC41  B_KLBSL_PNMN  Outpatient TRUE        
#>  8 077552  B_STRPT_PNMN  Clinical   TRUE        
#>  9 D08278  B_ESCHR_COLI  ICU        TRUE        
#> 10 5D1690  B_ESCHR_COLI  Outpatient TRUE        
#> # … with 190 more rows
# }