# ==================================================================== # # TITLE # # Antimicrobial Resistance (AMR) Analysis # # # # SOURCE # # https://gitlab.com/msberends/AMR # # # # LICENCE # # (c) 2019 Berends MS (m.s.berends@umcg.nl), Luz CF (c.f.luz@umcg.nl) # # # # This R package is free software; you can freely use and distribute # # it for both personal and commercial purposes under the terms of the # # GNU General Public License version 2.0 (GNU GPL-2), as published by # # the Free Software Foundation. # # # # This R package was created for academic research and was publicly # # released in the hope that it will be useful, but it comes WITHOUT # # ANY WARRANTY OR LIABILITY. # # Visit our website for more info: https://msberends.gitab.io/AMR. # # ==================================================================== # #' Predict antimicrobial resistance #' #' Create a prediction model to predict antimicrobial resistance for the next years on statistical solid ground. Standard errors (SE) will be returned as columns \code{se_min} and \code{se_max}. See Examples for a real live example. #' @inheritParams first_isolate #' @inheritParams graphics::plot #' @param col_ab column name of \code{tbl} with antimicrobial interpretations (\code{R}, \code{I} and \code{S}) #' @param col_date column name of the date, will be used to calculate years if this column doesn't consist of years already, defaults to the first column of with a date class #' @param year_min lowest year to use in the prediction model, dafaults to the lowest year in \code{col_date} #' @param year_max highest year to use in the prediction model, defaults to 10 years after today #' @param year_every unit of sequence between lowest year found in the data and \code{year_max} #' @param minimum minimal amount of available isolates per year to include. Years containing less observations will be estimated by the model. #' @param model the statistical model of choice. Valid values are \code{"binomial"} (or \code{"binom"} or \code{"logit"}) or \code{"loglin"} (or \code{"poisson"}) or \code{"linear"} (or \code{"lin"}). #' @param I_as_R a logical to indicate whether values \code{I} should be treated as \code{R} #' @param preserve_measurements a logical to indicate whether predictions of years that are actually available in the data should be overwritten by the original data. The standard errors of those years will be \code{NA}. #' @param info a logical to indicate whether textual analysis should be printed with the name and \code{\link{summary}} of the statistical model. #' @param main title of the plot #' @return \code{data.frame} with extra class \code{"resistance_predict"} with columns: #' \itemize{ #' \item{\code{year}} #' \item{\code{value}, the same as \code{estimated} when \code{preserve_measurements = FALSE}, and a combination of \code{observed} and \code{estimated} otherwise} #' \item{\code{se_min}, the lower bound of the standard error with a minimum of \code{0} (so the standard error will never go below 0\%)} #' \item{\code{se_max} the upper bound of the standard error with a maximum of \code{1} (so the standard error will never go above 100\%)} #' \item{\code{observations}, the total number of available observations in that year, i.e. S + I + R} #' \item{\code{observed}, the original observed resistant percentages} #' \item{\code{estimated}, the estimated resistant percentages, calculated by the model} #' } #' @seealso The \code{\link{portion}} function to calculate resistance, \cr \code{\link{lm}} \code{\link{glm}} #' @rdname resistance_predict #' @export #' @importFrom stats predict glm lm #' @importFrom dplyr %>% pull mutate mutate_at n group_by_at summarise filter filter_at all_vars n_distinct arrange case_when n_groups transmute #' @inheritSection AMR Read more on our website! #' @examples #' x <- resistance_predict(septic_patients, col_ab = "amox", year_min = 2010) #' plot(x) #' ggplot_rsi_predict(x) #' #' # use dplyr so you can actually read it: #' library(dplyr) #' x <- septic_patients %>% #' filter_first_isolate() %>% #' filter(mo_genus(mo) == "Staphylococcus") %>% #' resistance_predict("peni") #' plot(x) #' #' #' # create nice plots with ggplot yourself #' if (!require(ggplot2)) { #' #' data <- septic_patients %>% #' filter(mo == as.mo("E. coli")) %>% #' resistance_predict(col_ab = "amox", #' col_date = "date", #' info = FALSE, #' minimum = 15) #' #' ggplot(data, #' aes(x = year)) + #' geom_col(aes(y = value), #' fill = "grey75") + #' geom_errorbar(aes(ymin = se_min, #' ymax = se_max), #' colour = "grey50") + #' scale_y_continuous(limits = c(0, 1), #' breaks = seq(0, 1, 0.1), #' labels = paste0(seq(0, 100, 10), "%")) + #' labs(title = expression(paste("Forecast of amoxicillin resistance in ", #' italic("E. coli"))), #' y = "%IR", #' x = "Year") + #' theme_minimal(base_size = 13) #' } resistance_predict <- function(tbl, col_ab, col_date = NULL, year_min = NULL, year_max = NULL, year_every = 1, minimum = 30, model = 'binomial', I_as_R = TRUE, preserve_measurements = TRUE, info = TRUE) { if (nrow(tbl) == 0) { stop('This table does not contain any observations.') } if (!col_ab %in% colnames(tbl)) { stop('Column ', col_ab, ' not found.') } # -- date if (is.null(col_date)) { col_date <- search_type_in_df(tbl = tbl, type = "date") } if (is.null(col_date)) { stop("`col_date` must be set.", call. = FALSE) } if (!col_date %in% colnames(tbl)) { stop('Column ', col_date, ' not found.') } if (n_groups(tbl) > 1) { # no grouped tibbles please, mutate will throw errors tbl <- base::as.data.frame(tbl, stringsAsFactors = FALSE) } year <- function(x) { if (all(grepl('^[0-9]{4}$', x))) { x } else { as.integer(format(as.Date(x), '%Y')) } } df <- tbl %>% mutate_at(col_ab, as.rsi) %>% mutate_at(col_ab, droplevels) %>% mutate_at(col_ab, funs( if (I_as_R == TRUE) { gsub("I", "R", .) } else { gsub("I", "S", .) } )) %>% filter_at(col_ab, all_vars(!is.na(.))) %>% mutate(year = pull(., col_date) %>% year()) %>% group_by_at(c('year', col_ab)) %>% summarise(n()) if (df %>% pull(col_ab) %>% n_distinct(na.rm = TRUE) < 2) { stop("No variety in antimicrobial interpretations - all isolates are '", df %>% pull(col_ab) %>% unique(), "'.", call. = FALSE) } colnames(df) <- c('year', 'antibiotic', 'observations') df <- df %>% filter(!is.na(antibiotic)) %>% tidyr::spread(antibiotic, observations, fill = 0) %>% filter((R + S) >= minimum) df_matrix <- df %>% ungroup() %>% select(R, S) %>% as.matrix() if (NROW(df) == 0) { stop('There are no observations.') } year_lowest <- min(df$year) if (is.null(year_min)) { year_min <- year_lowest } else { year_min <- max(year_min, year_lowest, na.rm = TRUE) } if (is.null(year_max)) { year_max <- year(Sys.Date()) + 10 } years <- list(year = seq(from = year_min, to = year_max, by = year_every)) if (model %in% c('binomial', 'binom', 'logit')) { model <- "binomial" model_lm <- with(df, glm(df_matrix ~ year, family = binomial)) if (info == TRUE) { cat('\nLogistic regression model (logit) with binomial distribution') cat('\n------------------------------------------------------------\n') print(summary(model_lm)) } predictmodel <- predict(model_lm, newdata = years, type = "response", se.fit = TRUE) prediction <- predictmodel$fit se <- predictmodel$se.fit } else if (model %in% c('loglin', 'poisson')) { model <- "poisson" model_lm <- with(df, glm(R ~ year, family = poisson)) if (info == TRUE) { cat('\nLog-linear regression model (loglin) with poisson distribution') cat('\n--------------------------------------------------------------\n') print(summary(model_lm)) } predictmodel <- predict(model_lm, newdata = years, type = "response", se.fit = TRUE) prediction <- predictmodel$fit se <- predictmodel$se.fit } else if (model %in% c('lin', 'linear')) { model <- "linear" model_lm <- with(df, lm((R / (R + S)) ~ year)) if (info == TRUE) { cat('\nLinear regression model') cat('\n-----------------------\n') print(summary(model_lm)) } predictmodel <- predict(model_lm, newdata = years, se.fit = TRUE) prediction <- predictmodel$fit se <- predictmodel$se.fit } else { stop('No valid model selected.') } # prepare the output dataframe df_prediction <- data.frame(year = unlist(years), value = prediction, stringsAsFactors = FALSE) %>% mutate(se_min = value - se, se_max = value + se) if (model == 'poisson') { df_prediction <- df_prediction %>% mutate(value = value %>% format(scientific = FALSE) %>% as.integer(), se_min = as.integer(se_min), se_max = as.integer(se_max)) } else { df_prediction <- df_prediction %>% # se_max not above 1 mutate(se_max = ifelse(se_max > 1, 1, se_max)) } df_prediction <- df_prediction %>% # se_min not below 0 mutate(se_min = ifelse(se_min < 0, 0, se_min)) df_observations <- df %>% ungroup() %>% transmute(year, observations = R + S, observed = R / (R + S)) df_prediction <- df_prediction %>% left_join(df_observations, by = "year") %>% mutate(estimated = value) if (preserve_measurements == TRUE) { # replace estimated data by observed data df_prediction <- df_prediction %>% mutate(value = ifelse(!is.na(observed), observed, value), se_min = ifelse(!is.na(observed), NA, se_min), se_max = ifelse(!is.na(observed), NA, se_max)) } df_prediction <- df_prediction %>% mutate(value = case_when(value > 1 ~ 1, value < 0 ~ 0, TRUE ~ value)) %>% arrange(year) structure( .Data = df_prediction, class = c("resistance_predict", "data.frame"), I_as_R = I_as_R, model_title = model, model = model_lm, ab = col_ab ) } #' @rdname resistance_predict #' @export rsi_predict <- resistance_predict #' @exportMethod plot.mic #' @export #' @importFrom dplyr %>% group_by summarise #' @importFrom graphics plot axis arrows #' @rdname resistance_predict plot.resistance_predict <- function(x, main = paste("Resistance prediction of", attributes(x)$ab), ...) { if (attributes(x)$I_as_R == TRUE) { ylab <- "%IR" } else { ylab <- "%R" } plot(x = x$year, y = x$value, ylim = c(0, 1), yaxt = "n", # no y labels pch = 19, # closed dots ylab = paste0("Percentage (", ylab, ")"), xlab = "Year", main = main, sub = paste0("(model: ", attributes(x)$model_title, ")")) axis(side = 2, at = seq(0, 1, 0.1), labels = paste0(0:10 * 10, "%")) # arrows hack: https://stackoverflow.com/a/22037078/4575331 arrows(x0 = x$year, y0 = x$se_min, x1 = x$year, y1 = x$se_max, length = 0.05, angle = 90, code = 3) } #' @rdname resistance_predict #' @export ggplot_rsi_predict <- function(x, main = paste("Resistance prediction of", attributes(x)$ab), ...) { if (!"resistance_predict" %in% class(x)) { stop("`x` must be a resistance prediction model created with resistance_predict().") } if (attributes(x)$I_as_R == TRUE) { ylab <- "%IR" } else { ylab <- "%R" } suppressWarnings( ggplot2::ggplot(x, ggplot2::aes(x = year, y = value)) + ggplot2::geom_col() + ggplot2::geom_errorbar(ggplot2::aes(ymin = se_min, ymax = se_max)) + scale_y_percent() + labs(title = main, y = paste0("Percentage (", ylab, ")"), x = "Year", caption = paste0("(model: ", attributes(x)$model_title, ")")) ) }