# ==================================================================== # # TITLE: # # AMR: An R Package for Working with Antimicrobial Resistance Data # # # # SOURCE CODE: # # https://github.com/msberends/AMR # # # # PLEASE CITE THIS SOFTWARE AS: # # Berends MS, Luz CF, Friedrich AW, et al. (2022). # # AMR: An R Package for Working with Antimicrobial Resistance Data. # # Journal of Statistical Software, 104(3), 1-31. # # https://doi.org/10.18637/jss.v104.i03 # # # # Developed at the University of Groningen and the University Medical # # Center Groningen in The Netherlands, in collaboration with many # # colleagues from around the world, see our website. # # # # This R package is free software; you can freely use and distribute # # it for both personal and commercial purposes under the terms of the # # GNU General Public License version 2.0 (GNU GPL-2), as published by # # the Free Software Foundation. # # We created this package for both routine data analysis and academic # # research and it was publicly released in the hope that it will be # # useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. # # # # Visit our website for the full manual and a complete tutorial about # # how to conduct AMR data analysis: https://amr-for-r.org # # ==================================================================== # #' Random MIC Values/Disk Zones/SIR Generation #' #' These functions can be used for generating random MIC values and disk diffusion diameters, for AMR data analysis practice. By providing a microorganism and antimicrobial drug, the generated results will reflect reality as much as possible. #' @param size Desired size of the returned vector. If used in a [data.frame] call or `dplyr` verb, will get the current (group) size if left blank. #' @param mo Any [character] that can be coerced to a valid microorganism code with [as.mo()]. Can be the same length as `size`. #' @param ab Any [character] that can be coerced to a valid antimicrobial drug code with [as.ab()]. #' @param prob_SIR A vector of length 3: the probabilities for "S" (1st value), "I" (2nd value) and "R" (3rd value). #' @param skew Direction of skew for MIC or disk values, either `"right"` or `"left"`. A left-skewed distribution has the majority of the data on the right. #' @param severity Skew severity; higher values will increase the skewedness. Default is `2`; use `0` to prevent skewedness. #' @param ... Ignored, only in place to allow future extensions. #' @details #' Internally, MIC and disk zone values are sampled based on clinical breakpoints defined in the [clinical_breakpoints] data set. To create specific generated values per bug or drug, set the `mo` and/or `ab` argument. The MICs are sampled on a log2 scale and disks linearly, using weighted probabilities. The weights are based on the `skew` and `severity` arguments: #' * `skew = "right"` places more emphasis on lower MIC or higher disk values. #' * `skew = "left"` places more emphasis on higher MIC or lower disk values. #' * `severity` controls the exponential bias applied. #' @return class `mic` for [random_mic()] (see [as.mic()]) and class `disk` for [random_disk()] (see [as.disk()]) #' @name random #' @rdname random #' @export #' @examples #' random_mic(25) #' random_disk(25) #' random_sir(25) #' #' # add more skewedness, make more realistic by setting a bug and/or drug: #' disks <- random_disk(100, severity = 2, mo = "Escherichia coli", ab = "CIP") #' plot(disks) #' # `plot()` and `ggplot2::autoplot()` allow for coloured bars if `mo` and `ab` are set #' plot(disks, mo = "Escherichia coli", ab = "CIP", guideline = "CLSI 2025") #' #' \donttest{ #' random_mic(25, "Klebsiella pneumoniae") # range 0.0625-64 #' random_mic(25, "Klebsiella pneumoniae", "meropenem") # range 0.0625-16 #' random_mic(25, "Streptococcus pneumoniae", "meropenem") # range 0.0625-4 #' #' random_disk(25, "Klebsiella pneumoniae") # range 8-50 #' random_disk(25, "Klebsiella pneumoniae", "ampicillin") # range 11-17 #' random_disk(25, "Streptococcus pneumoniae", "ampicillin") # range 12-27 #' } random_mic <- function(size = NULL, mo = NULL, ab = NULL, skew = "right", severity = 1, ...) { meet_criteria(size, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE, allow_NULL = TRUE) meet_criteria(mo, allow_class = "character", has_length = c(1, size), allow_NULL = TRUE) meet_criteria(ab, allow_class = "character", has_length = 1, allow_NULL = TRUE) meet_criteria(skew, allow_class = "character", is_in = c("right", "left"), has_length = 1) meet_criteria(severity, allow_class = c("numeric", "integer"), has_length = 1, is_positive_or_zero = TRUE, is_finite = TRUE) if (is.null(size)) { size <- NROW(get_current_data(arg_name = "size", call = -3)) } if (length(mo) > 1) { out <- rep(NA_mic_, length(size)) p <- progress_ticker(n = length(unique(mo)), n_min = 10, title = "Generating random MIC values") for (mo_ in unique(mo)) { p$tick() out[which(mo == mo_)] <- random_exec("MIC", size = sum(mo == mo_), mo = mo_, ab = ab, skew = skew, severity = severity) } out <- as.mic(out, keep_operators = "none") if (stats::runif(1) > 0.5 && length(unique(out)) > 1) { out[out == min(out)] <- paste0("<=", out[out == min(out)]) } if (stats::runif(1) > 0.5 && length(unique(out)) > 1) { out[out == max(out) & out %unlike% "<="] <- paste0(">=", out[out == max(out) & out %unlike% "<="]) } return(out) } else { random_exec("MIC", size = size, mo = mo, ab = ab, skew = skew, severity = severity) } } #' @rdname random #' @export random_disk <- function(size = NULL, mo = NULL, ab = NULL, skew = "left", severity = 1, ...) { meet_criteria(size, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE, allow_NULL = TRUE) meet_criteria(mo, allow_class = "character", has_length = c(1, size), allow_NULL = TRUE) meet_criteria(ab, allow_class = "character", has_length = 1, allow_NULL = TRUE) meet_criteria(skew, allow_class = "character", is_in = c("right", "left"), has_length = 1) meet_criteria(severity, allow_class = c("numeric", "integer"), has_length = 1, is_positive_or_zero = TRUE, is_finite = TRUE) if (is.null(size)) { size <- NROW(get_current_data(arg_name = "size", call = -3)) } if (length(mo) > 1) { out <- rep(NA_mic_, length(size)) p <- progress_ticker(n = length(unique(mo)), n_min = 10, title = "Generating random MIC values") for (mo_ in unique(mo)) { p$tick() out[which(mo == mo_)] <- random_exec("DISK", size = sum(mo == mo_), mo = mo_, ab = ab, skew = skew, severity = severity) } out <- as.disk(out) return(out) } else { random_exec("DISK", size = size, mo = mo, ab = ab, skew = skew, severity = severity) } } #' @rdname random #' @export random_sir <- function(size = NULL, prob_SIR = c(0.33, 0.33, 0.33), ...) { meet_criteria(size, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE, allow_NULL = TRUE) meet_criteria(prob_SIR, allow_class = c("numeric", "integer"), has_length = 3) if (is.null(size)) { size <- NROW(get_current_data(arg_name = "size", call = -3)) } sample(as.sir(c("S", "I", "R")), size = size, replace = TRUE, prob = prob_SIR) } random_exec <- function(method_type, size, mo = NULL, ab = NULL, skew = "right", severity = 1) { df <- AMR::clinical_breakpoints %pm>% subset(method == method_type & type == "human") if (!is.null(mo)) { mo_coerced <- as.mo(mo, info = FALSE) mo_include <- c(mo_coerced, as.mo(mo_genus(mo_coerced)), as.mo(mo_family(mo_coerced)), as.mo(mo_order(mo_coerced))) df_new <- df %pm>% subset(mo %in% mo_include) if (nrow(df_new) > 0) df <- df_new } if (!is.null(ab)) { ab_coerced <- as.ab(ab) df_new <- df %pm>% subset(ab %in% ab_coerced) if (nrow(df_new) > 0) df <- df_new } if (method_type == "MIC") { lowest_mic <- min(df$breakpoint_S, na.rm = TRUE) lowest_mic <- log2(lowest_mic) + sample(c(-3:2), 1) lowest_mic <- 2^lowest_mic highest_mic <- max(df$breakpoint_R, na.rm = TRUE) highest_mic <- log2(highest_mic) + sample(c(-3:1), 1) highest_mic <- max(lowest_mic * 2, 2^highest_mic) out <- skewed_values(COMMON_MIC_VALUES, size = size, min = lowest_mic, max = highest_mic, skew = skew, severity = severity) if (stats::runif(1) > 0.5 && length(unique(out)) > 1) { out[out == min(out)] <- paste0("<=", out[out == min(out)]) } if (stats::runif(1) > 0.5 && length(unique(out)) > 1) { out[out == max(out) & out %unlike% "<="] <- paste0(">=", out[out == max(out) & out %unlike% "<="]) } return(as.mic(out)) } else if (method_type == "DISK") { disk_range <- seq( from = floor(min(df$breakpoint_R[!is.na(df$breakpoint_R)], na.rm = TRUE) / 1.25), to = ceiling(max(df$breakpoint_S[df$breakpoint_S != 50], na.rm = TRUE) * 1.25), by = 1 ) disk_range <- disk_range[disk_range >= 6 & disk_range <= 50] out <- skewed_values(disk_range, size = size, min = min(disk_range), max = max(disk_range), skew = skew, severity = severity) return(as.disk(out)) } } skewed_values <- function(values, size, min, max, skew = c("right", "left"), severity = 1) { skew <- match.arg(skew) range_vals <- values[values >= min & values <= max] if (length(range_vals) < 2) range_vals <- values ranks <- seq_along(range_vals) weights <- switch(skew, right = rev(ranks)^severity, left = ranks^severity ) weights <- weights / sum(weights) sample(range_vals, size = size, replace = TRUE, prob = weights) }