Skip to contents

These functions determine which items in a vector can be considered (the start of) a new episode, based on the argument episode_days. This can be used to determine clinical episodes for any epidemiological analysis. The get_episode() function returns the index number of the episode per group, while the is_new_episode() function returns values TRUE/FALSE to indicate whether an item in a vector is the start of a new episode.

Usage

get_episode(x, episode_days, ...)

is_new_episode(x, episode_days, ...)

Arguments

x

vector of dates (class Date or POSIXt), will be sorted internally to determine episodes

episode_days

required episode length in days, can also be less than a day or Inf, see Details

...

ignored, only in place to allow future extensions

Value

  • get_episode(): a double vector

  • is_new_episode(): a logical vector

Details

Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least episode_days days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least episode_days days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.

The first_isolate() function is a wrapper around the is_new_episode() function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.

The dplyr package is not required for these functions to work, but these functions do support variable grouping and work conveniently inside dplyr verbs such as filter(), mutate() and summarise().

See also

Examples

# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 200), ]

get_episode(df$date, episode_days = 60) # indices
#>   [1] 11  2 13 51 18 14 11 15  4 31 11  6 45 56 10 63 32 62 24 42 40 60 25 28 46
#>  [26] 46 33 27  2 64 10 30 28 18 52 57 39 12 61 18 58  5 55 46 53  4 29 60 23 55
#>  [51] 51 10 22 25  9 14  1 54 62 27 22 43 50 29 48  1  3 40 54 11 45  1  2 57 20
#>  [76] 56 45 21 59 63 33 62 19 47 20 31 50 19 23 61 28 27 22 46 30 49  7 26 31 57
#> [101] 25 56 62 20  8 17 58 61 50 13 33 61 12 49 34 43 41  1 27 59 55 59 63 54 21
#> [126] 13 37 35 52 27 25 36 59 63  3 34 20 60 28 55 16  1 57 25 13 42  7 54 15 29
#> [151] 34  1 23 38 56 21 46 48 60 10 47 17 47 10 59 35 54 59 43 46 57  7 20 62 38
#> [176] 21 59 43 58 50  8 27 53  3  3 45 44  4 30 60 38 58 39 27 21 13 13  1 62 13
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#>   [1] FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE
#>  [13]  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE
#>  [25] FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE
#>  [37] FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE
#>  [49]  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
#>  [61]  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
#>  [73] FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE
#>  [85] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE
#>  [97] FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE
#> [109]  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
#> [121] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE
#> [133] FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE
#> [145]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [157] FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE
#> [169] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [181]  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE
#> [193]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE

# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 4 × 46
#>   date       patient   age gender ward     mo           PEN   OXA   FLC   AMX  
#>   <date>     <chr>   <dbl> <chr>  <chr>    <mo>         <rsi> <rsi> <rsi> <rsi>
#> 1 2002-07-21 955940     82 F      Clinical B_PSDMN_AERG R     NA    NA    R    
#> 2 2002-07-24 F35553     51 M      ICU      B_STPHY_AURS R     NA    S     R    
#> 3 2002-06-22 FD8039     75 F      ICU      B_ESCHR_COLI R     NA    NA    NA   
#> 4 2002-07-23 F35553     51 M      ICU      B_STPHY_AURS R     NA    S     R    
#> # … with 36 more variables: AMC <rsi>, AMP <rsi>, TZP <rsi>, CZO <rsi>,
#> #   FEP <rsi>, CXM <rsi>, FOX <rsi>, CTX <rsi>, CAZ <rsi>, CRO <rsi>,
#> #   GEN <rsi>, TOB <rsi>, AMK <rsi>, KAN <rsi>, TMP <rsi>, SXT <rsi>,
#> #   NIT <rsi>, FOS <rsi>, LNZ <rsi>, CIP <rsi>, MFX <rsi>, VAN <rsi>,
#> #   TEC <rsi>, TCY <rsi>, TGC <rsi>, DOX <rsi>, ERY <rsi>, CLI <rsi>,
#> #   AZM <rsi>, IPM <rsi>, MEM <rsi>, MTR <rsi>, CHL <rsi>, COL <rsi>,
#> #   MUP <rsi>, RIF <rsi>

# the functions also work for less than a day, e.g. to include one per hour:
get_episode(c(
  Sys.time(),
  Sys.time() + 60 * 60
),
episode_days = 1 / 24
)
#> [1] 1 2

# \donttest{
if (require("dplyr")) {
  # is_new_episode() can also be used in dplyr verbs to determine patient
  # episodes based on any (combination of) grouping variables:
  df %>%
    mutate(condition = sample(
      x = c("A", "B", "C"),
      size = 200,
      replace = TRUE
    )) %>%
    group_by(condition) %>%
    mutate(new_episode = is_new_episode(date, 365)) %>%
    select(patient, date, condition, new_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   condition [3]
#>    patient date       condition new_episode
#>    <chr>   <date>     <chr>     <lgl>      
#>  1 318447  2004-05-28 A         FALSE      
#>  2 C70694  2002-05-15 B         FALSE      
#>  3 E48302  2004-11-29 B         FALSE      
#>  4 D60054  2014-10-16 A         FALSE      
#>  5 5DF436  2006-01-04 B         TRUE       
#>  6 4F6B71  2005-01-24 B         FALSE      
#>  7 4B6270  2004-07-01 A         FALSE      
#>  8 A92398  2005-05-14 A         FALSE      
#>  9 F35553  2002-10-20 C         FALSE      
#> 10 A54805  2008-11-19 B         FALSE      
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward, patient) %>%
    transmute(date,
      patient,
      new_index = get_episode(date, 60),
      new_logical = is_new_episode(date, 60)
    )
}
#> # A tibble: 200 × 5
#> # Groups:   ward, patient [182]
#>    ward       date       patient new_index new_logical
#>    <chr>      <date>     <chr>       <dbl> <lgl>      
#>  1 Outpatient 2004-05-28 318447          1 TRUE       
#>  2 Clinical   2002-05-15 C70694          1 TRUE       
#>  3 ICU        2004-11-29 E48302          1 TRUE       
#>  4 Clinical   2014-10-16 D60054          1 TRUE       
#>  5 ICU        2006-01-04 5DF436          1 TRUE       
#>  6 Clinical   2005-01-24 4F6B71          1 TRUE       
#>  7 Clinical   2004-07-01 4B6270          1 TRUE       
#>  8 Clinical   2005-05-14 A92398          1 TRUE       
#>  9 ICU        2002-10-20 F35553          3 TRUE       
#> 10 Clinical   2008-11-19 A54805          1 TRUE       
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward) %>%
    summarise(
      n_patients = n_distinct(patient),
      n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
      n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
      n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
    )
}
#> # A tibble: 3 × 5
#>   ward       n_patients n_episodes_365 n_episodes_60 n_episodes_30
#>   <chr>           <int>          <int>         <int>         <int>
#> 1 Clinical          116             15            56            78
#> 2 ICU                56             13            33            42
#> 3 Outpatient         10              5             8             8
if (require("dplyr")) {

  # grouping on patients and microorganisms leads to the same
  # results as first_isolate() when using 'episode-based':
  x <- df %>%
    filter_first_isolate(
      include_unknown = TRUE,
      method = "episode-based"
    )

  y <- df %>%
    group_by(patient, mo) %>%
    filter(is_new_episode(date, 365)) %>%
    ungroup()

  identical(x, y)
}
#> Including isolates from ICU.
#> [1] TRUE
if (require("dplyr")) {

  # but is_new_episode() has a lot more flexibility than first_isolate(),
  # since you can now group on anything that seems relevant:
  df %>%
    group_by(patient, mo, ward) %>%
    mutate(flag_episode = is_new_episode(date, 365)) %>%
    select(group_vars(.), flag_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   patient, mo, ward [189]
#>    patient mo           ward       flag_episode
#>    <chr>   <mo>         <chr>      <lgl>       
#>  1 318447  B_STPHY_CONS Outpatient TRUE        
#>  2 C70694  B_STPHY_AURS Clinical   TRUE        
#>  3 E48302  B_STRPT_PNMN ICU        TRUE        
#>  4 D60054  B_STRPT_SLVR Clinical   TRUE        
#>  5 5DF436  B_ENTRC      ICU        TRUE        
#>  6 4F6B71  B_STRPT_GRPB Clinical   TRUE        
#>  7 4B6270  B_PSDMN_AERG Clinical   TRUE        
#>  8 A92398  B_ESCHR_COLI Clinical   TRUE        
#>  9 F35553  B_STPHY_AURS ICU        FALSE       
#> 10 A54805  B_STRPT_PNMN Clinical   TRUE        
#> # … with 190 more rows
# }