# ==================================================================== # # TITLE: # # AMR: An R Package for Working with Antimicrobial Resistance Data # # # # SOURCE CODE: # # https://github.com/msberends/AMR # # # # PLEASE CITE THIS SOFTWARE AS: # # Berends MS, Luz CF, Friedrich AW, et al. (2022). # # AMR: An R Package for Working with Antimicrobial Resistance Data. # # Journal of Statistical Software, 104(3), 1-31. # # https://doi.org/10.18637/jss.v104.i03 # # # # Developed at the University of Groningen and the University Medical # # Center Groningen in The Netherlands, in collaboration with many # # colleagues from around the world, see our website. # # # # This R package is free software; you can freely use and distribute # # it for both personal and commercial purposes under the terms of the # # GNU General Public License version 2.0 (GNU GPL-2), as published by # # the Free Software Foundation. # # We created this package for both routine data analysis and academic # # research and it was publicly released in the hope that it will be # # useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. # # # # Visit our website for the full manual and a complete tutorial about # # how to conduct AMR data analysis: https://msberends.github.io/AMR/ # # ==================================================================== # # all four methods expect_equal( sum(first_isolate(x = example_isolates, method = "isolate-based", info = TRUE), na.rm = TRUE), 1984 ) expect_equal( sum(first_isolate(x = example_isolates, method = "patient-based", info = TRUE), na.rm = TRUE), 1265 ) expect_equal( sum(first_isolate(x = example_isolates, method = "episode-based", info = TRUE), na.rm = TRUE), 1300 ) expect_equal( sum(first_isolate(x = example_isolates, method = "phenotype-based", info = TRUE), na.rm = TRUE), 1387 ) # for phenotype determination expect_equal(AMR:::duplicated_antibiogram("SSSS", points_threshold = 2, ignore_I = TRUE, type = "points"), FALSE) expect_equal(AMR:::duplicated_antibiogram(c("RRR", "SSS"), points_threshold = 2, ignore_I = TRUE, type = "points"), c(FALSE, FALSE)) expect_equal(AMR:::duplicated_antibiogram(c("RRR", "RRR", "SSS"), points_threshold = 2, ignore_I = TRUE, type = "points"), c(FALSE, TRUE, FALSE)) expect_equal(AMR:::duplicated_antibiogram(c("RRR", "RSS", "SSS", "RSS", "RRR", "RRR", "SSS", "RSS", "RSR", "RRR"), points_threshold = 2, ignore_I = TRUE, type = "points"), c(FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE)) # Phenotype-based, using key antimicrobials expect_equal( sum(first_isolate( x = example_isolates, method = "phenotype-based", type = "keyantimicrobials", antifungal = NULL, info = TRUE ), na.rm = TRUE), 1383 ) expect_equal( sum(first_isolate( x = example_isolates, method = "phenotype-based", type = "keyantimicrobials", antifungal = NULL, info = TRUE, ignore_I = FALSE ), na.rm = TRUE), 1397 ) # first non-ICU isolates expect_true( sum( first_isolate(example_isolates, col_mo = "mo", col_date = "date", col_patient_id = "patient", col_icu = example_isolates$ward == "ICU", info = TRUE, icu_exclude = TRUE ), na.rm = TRUE) < 950 ) # set 1500 random observations to be of specimen type 'Urine' random_rows <- sample(x = 1:2000, size = 1500, replace = FALSE) x <- example_isolates x$specimen <- "Other" x[random_rows, "specimen"] <- "Urine" expect_true( sum(first_isolate( x = x, col_date = "date", col_patient_id = "patient", col_mo = "mo", col_specimen = "specimen", filter_specimen = "Urine", info = TRUE ), na.rm = TRUE) < 1400 ) # same, but now exclude ICU expect_true( sum(first_isolate( x = x, col_date = "date", col_patient_id = "patient", col_mo = "mo", col_specimen = "specimen", filter_specimen = "Urine", col_icu = x$ward == "ICU", icu_exclude = TRUE, info = TRUE ), na.rm = TRUE) < 1000 ) # "No isolates found" test_iso <- example_isolates test_iso$specimen <- "test" expect_message(first_isolate(test_iso, "date", "patient", col_mo = "mo", col_specimen = "specimen", filter_specimen = "something_unexisting", info = TRUE )) # printing of exclusion message expect_message(first_isolate(example_isolates, col_date = "date", col_mo = "mo", col_patient_id = "patient", col_testcode = "gender", testcodes_exclude = "M", info = TRUE )) # errors expect_error(first_isolate("date", "patient", col_mo = "mo")) expect_error(first_isolate(example_isolates, col_date = "non-existing col", col_mo = "mo" )) if (AMR:::pkg_is_available("dplyr", min_version = "1.0.0", also_load = TRUE)) { # if mo is not an mo class, result should be the same expect_identical( example_isolates %>% mutate(mo = as.character(mo)) %>% first_isolate( col_date = "date", col_mo = "mo", col_patient_id = "patient", info = FALSE ), example_isolates %>% first_isolate( col_date = "date", col_mo = "mo", col_patient_id = "patient", info = FALSE ) ) # support for WHONET expect_message(example_isolates %>% select(-patient) %>% mutate( `First name` = "test", `Last name` = "test", Sex = "Female" ) %>% first_isolate(info = TRUE)) # groups x <- example_isolates %>% group_by(ward) %>% mutate(first = first_isolate()) y <- example_isolates %>% group_by(ward) %>% mutate(first = first_isolate(.)) expect_identical(x, y) } # missing dates should be no problem df <- example_isolates df[1:100, "date"] <- NA expect_equal( sum( first_isolate( x = df, col_date = "date", col_patient_id = "patient", col_mo = "mo", info = TRUE ), na.rm = TRUE ), 1376 ) # unknown MOs test_unknown <- example_isolates test_unknown$mo <- ifelse(test_unknown$mo == "B_ESCHR_COLI", "UNKNOWN", test_unknown$mo) expect_equal( sum(first_isolate(test_unknown, include_unknown = FALSE)), 1106 ) expect_equal( sum(first_isolate(test_unknown, include_unknown = TRUE)), 1589 ) test_unknown$mo <- ifelse(test_unknown$mo == "UNKNOWN", NA, test_unknown$mo) expect_equal( sum(first_isolate(test_unknown)), 1106 ) # empty sir results expect_equal( sum(first_isolate(example_isolates, include_untested_sir = FALSE)), 1360 ) # shortcuts expect_identical( filter_first_isolate(example_isolates), subset(example_isolates, first_isolate(example_isolates)) ) # notice that all mo's are distinct, so all are TRUE expect_true(all(first_isolate(AMR:::pm_distinct(example_isolates, mo, .keep_all = TRUE), info = TRUE) == TRUE)) # only one isolate, so return fast expect_true(first_isolate(data.frame(mo = "Escherichia coli", date = Sys.Date(), patient = "patient"), info = TRUE))