% Generated by roxygen2: do not edit by hand % Please edit documentation in R/mean_amr_distance.R \name{mean_amr_distance} \alias{mean_amr_distance} \alias{mean_amr_distance.sir} \alias{mean_amr_distance.data.frame} \alias{amr_distance_from_row} \title{Calculate the Mean AMR Distance} \usage{ mean_amr_distance(x, ...) \method{mean_amr_distance}{sir}(x, ..., combine_SI = TRUE) \method{mean_amr_distance}{data.frame}(x, ..., combine_SI = TRUE) amr_distance_from_row(amr_distance, row) } \arguments{ \item{x}{a vector of class \link[=as.sir]{sir}, \link[=as.mic]{mic} or \link[=as.disk]{disk}, or a \link{data.frame} containing columns of any of these classes} \item{...}{variables to select (supports \link[tidyselect:language]{tidyselect language} such as \code{column1:column4} and \code{where(is.mic)}, and can thus also be \link[=amr_selector]{antimicrobial selectors}} \item{combine_SI}{a \link{logical} to indicate whether all values of S, SDD, and I must be merged into one, so the input only consists of S+I vs. R (susceptible vs. resistant) - the default is \code{TRUE}} \item{amr_distance}{the outcome of \code{\link[=mean_amr_distance]{mean_amr_distance()}}} \item{row}{an index, such as a row number} } \description{ Calculates a normalised mean for antimicrobial resistance between multiple observations, to help to identify similar isolates without comparing antibiograms by hand. } \details{ The mean AMR distance is effectively \href{https://en.wikipedia.org/wiki/Standard_score}{the Z-score}; a normalised numeric value to compare AMR test results which can help to identify similar isolates, without comparing antibiograms by hand. MIC values (see \code{\link[=as.mic]{as.mic()}}) are transformed with \code{\link[=log2]{log2()}} first; their distance is thus calculated as \code{(log2(x) - mean(log2(x))) / sd(log2(x))}. SIR values (see \code{\link[=as.sir]{as.sir()}}) are transformed using \code{"S"} = 1, \code{"I"} = 2, and \code{"R"} = 3. If \code{combine_SI} is \code{TRUE} (default), the \code{"I"} will be considered to be 1. For data sets, the mean AMR distance will be calculated per column, after which the mean per row will be returned, see \emph{Examples}. Use \code{\link[=amr_distance_from_row]{amr_distance_from_row()}} to subtract distances from the distance of one row, see \emph{Examples}. } \section{Interpretation}{ Isolates with distances less than 0.01 difference from each other should be considered similar. Differences lower than 0.025 should be considered suspicious. } \examples{ sir <- random_sir(10) sir mean_amr_distance(sir) mic <- random_mic(10) mic mean_amr_distance(mic) # equal to the Z-score of their log2: (log2(mic) - mean(log2(mic))) / sd(log2(mic)) disk <- random_disk(10) disk mean_amr_distance(disk) y <- data.frame( id = LETTERS[1:10], amox = random_sir(10, ab = "amox", mo = "Escherichia coli"), cipr = random_disk(10, ab = "cipr", mo = "Escherichia coli"), gent = random_mic(10, ab = "gent", mo = "Escherichia coli"), tobr = random_mic(10, ab = "tobr", mo = "Escherichia coli") ) y mean_amr_distance(y) y$amr_distance <- mean_amr_distance(y, where(is.mic)) y[order(y$amr_distance), ] if (require("dplyr")) { y \%>\% mutate( amr_distance = mean_amr_distance(y), check_id_C = amr_distance_from_row(amr_distance, id == "C") ) \%>\% arrange(check_id_C) } if (require("dplyr")) { # support for groups example_isolates \%>\% filter(mo_genus() == "Enterococcus" & mo_species() != "") \%>\% select(mo, TCY, carbapenems()) \%>\% group_by(mo) \%>\% mutate(dist = mean_amr_distance(.)) \%>\% arrange(mo, dist) } }