% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/mo.R
\name{as.mo}
\alias{as.mo}
\alias{mo}
\alias{is.mo}
\alias{mo_uncertainties}
\alias{mo_reset_session}
\title{Transform Input to a Microorganism Code}
\usage{
as.mo(
x,
Becker = FALSE,
Lancefield = FALSE,
minimum_matching_score = NULL,
allow_uncertain = TRUE,
keep_synonyms = getOption("AMR_keep_synonyms", TRUE),
reference_df = get_mo_source(),
ignore_pattern = getOption("AMR_ignore_pattern", NULL),
language = get_AMR_locale(),
info = interactive(),
...
)
is.mo(x)
mo_uncertainties()
mo_reset_session()
}
\arguments{
\item{x}{a \link{character} vector or a \link{data.frame} with one or two columns}
\item{Becker}{a \link{logical} to indicate whether staphylococci should be categorised into coagulase-negative staphylococci ("CoNS") and coagulase-positive staphylococci ("CoPS") instead of their own species, according to Karsten Becker \emph{et al.} (1,2,3).
This excludes \emph{Staphylococcus aureus} at default, use \code{Becker = "all"} to also categorise \emph{S. aureus} as "CoPS".}
\item{Lancefield}{a \link{logical} to indicate whether a beta-haemolytic \emph{Streptococcus} should be categorised into Lancefield groups instead of their own species, according to Rebecca C. Lancefield (4). These streptococci will be categorised in their first group, e.g. \emph{Streptococcus dysgalactiae} will be group C, although officially it was also categorised into groups G and L.
This excludes enterococci at default (who are in group D), use \code{Lancefield = "all"} to also categorise all enterococci as group D.}
\item{minimum_matching_score}{a numeric value to set as the lower limit for the \link[=mo_matching_score]{MO matching score}. When left blank, this will be determined automatically based on the character length of \code{x}, its \link[=microorganisms]{taxonomic kingdom} and \link[=mo_matching_score]{human pathogenicity}.}
\item{allow_uncertain}{a number between \code{0} (or \code{"none"}) and \code{3} (or \code{"all"}), or \code{TRUE} (= \code{2}) or \code{FALSE} (= \code{0}) to indicate whether the input should be checked for less probable results, see \emph{Details}}
\item{keep_synonyms}{a \link{logical} to indicate if old, previously valid taxonomic names must be preserved and not be corrected to currently accepted names. The default is \code{TRUE}, which will return a note if old taxonomic names are returned. The default can be set with \code{options(AMR_keep_synonyms = ...)}.}
\item{reference_df}{a \link{data.frame} to be used for extra reference when translating \code{x} to a valid \code{\link{mo}}. See \code{\link[=set_mo_source]{set_mo_source()}} and \code{\link[=get_mo_source]{get_mo_source()}} to automate the usage of your own codes (e.g. used in your analysis or organisation).}
\item{ignore_pattern}{a regular expression (case-insensitive) of which all matches in \code{x} must return \code{NA}. This can be convenient to exclude known non-relevant input and can also be set with the option \code{AMR_ignore_pattern}, e.g. \code{options(AMR_ignore_pattern = "(not reported|contaminated flora)")}.}
\item{language}{language to translate text like "no growth", which defaults to the system language (see \code{\link[=get_AMR_locale]{get_AMR_locale()}})}
\item{info}{a \link{logical} to indicate if a progress bar should be printed if more than 25 items are to be coerced, defaults to \code{TRUE} only in interactive mode}
\item{...}{other arguments passed on to functions}
}
\value{
A \link{character} \link{vector} with additional class \code{\link{mo}}
}
\description{
Use this function to determine a valid microorganism code (\code{\link{mo}}). Determination is done using intelligent rules and the complete taxonomic kingdoms Animalia, Archaea, Bacteria and Protozoa, and most microbial species from the kingdom Fungi (see \emph{Source}). The input can be almost anything: a full name (like \code{"Staphylococcus aureus"}), an abbreviated name (such as \code{"S. aureus"}), an abbreviation known in the field (such as \code{"MRSA"}), or just a genus. See \emph{Examples}.
}
\details{
\subsection{General Info}{
A microorganism (MO) code from this package (class: \code{\link{mo}}) is human readable and typically looks like these examples:
\if{html}{\out{
}}\preformatted{ Code Full name
--------------- --------------------------------------
B_KLBSL Klebsiella
B_KLBSL_PNMN Klebsiella pneumoniae
B_KLBSL_PNMN_RHNS Klebsiella pneumoniae rhinoscleromatis
| | | |
| | | |
| | | \\---> subspecies, a 4-5 letter acronym
| | \\----> species, a 4-5 letter acronym
| \\----> genus, a 5-7 letter acronym
\\----> taxonomic kingdom: A (Archaea), AN (Animalia), B (Bacteria),
F (Fungi), PL (Plantae), P (Protozoa)
}\if{html}{\out{
}}
Values that cannot be coerced will be considered 'unknown' and will get the MO code \code{UNKNOWN}.
Use the \code{\link[=mo_property]{mo_*}} functions to get properties based on the returned code, see \emph{Examples}.
The algorithm uses data from the List of Prokaryotic names with Standing in Nomenclature (LPSN) and the Global Biodiversity Information Facility (GBIF) (see \link{microorganisms}).
The \code{\link[=as.mo]{as.mo()}} function uses several coercion rules for fast and logical results. It assesses the input matching criteria in the following order:
\enumerate{
\item Human pathogenic prevalence: the function starts with more prevalent microorganisms, followed by less prevalent ones;
\item Taxonomic kingdom: the function starts with determining Bacteria, then Fungi, then Protozoa, then others;
\item Breakdown of input values to identify possible matches.
}
This will lead to the effect that e.g. \code{"E. coli"} (a microorganism highly prevalent in humans) will return the microbial ID of \emph{Escherichia coli} and not \emph{Entamoeba coli} (a microorganism less prevalent in humans), although the latter would alphabetically come first.
}
\subsection{Coping with Uncertain Results}{
In addition, the \code{\link[=as.mo]{as.mo()}} function can differentiate four levels of uncertainty to guess valid results:
\itemize{
\item Uncertainty level 0: no additional rules are applied;
\item Uncertainty level 1: allow previously accepted (but now invalid) taxonomic names and minor spelling errors;
\item Uncertainty level 2: allow all of level 1, strip values between brackets, inverse the words of the input, strip off text elements from the end keeping at least two elements;
\item Uncertainty level 3: allow all of level 1 and 2, strip off text elements from the end, allow any part of a taxonomic name.
}
The level of uncertainty can be set using the argument \code{allow_uncertain}. The default is \code{allow_uncertain = TRUE}, which is equal to uncertainty level 2. Using \code{allow_uncertain = FALSE} is equal to uncertainty level 0 and will skip all rules. You can also use e.g. \code{as.mo(..., allow_uncertain = 1)} to only allow up to level 1 uncertainty.
With the default setting (\code{allow_uncertain = TRUE}, level 2), below examples will lead to valid results:
\itemize{
\item \code{"Streptococcus group B (known as S. agalactiae)"}. The text between brackets will be removed and a warning will be thrown that the result \emph{Streptococcus group B} (\code{B_STRPT_GRPB}) needs review.
\item \code{"S. aureus - please mind: MRSA"}. The last word will be stripped, after which the function will try to find a match. If it does not, the second last word will be stripped, etc. Again, a warning will be thrown that the result \emph{Staphylococcus aureus} (\code{B_STPHY_AURS}) needs review.
\item \code{"Fluoroquinolone-resistant Neisseria gonorrhoeae"}. The first word will be stripped, after which the function will try to find a match. A warning will be thrown that the result \emph{Neisseria gonorrhoeae} (\code{B_NESSR_GNRR}) needs review.
}
There are three helper functions that can be run after using the \code{\link[=as.mo]{as.mo()}} function:
\itemize{
\item Use \code{\link[=mo_uncertainties]{mo_uncertainties()}} to get a \link{data.frame} that prints in a pretty format with all taxonomic names that were guessed. The output contains the matching score for all matches (see \emph{Matching Score for Microorganisms} below).
\item Use \code{\link[=mo_failures]{mo_failures()}} to get a \link{character} \link{vector} with all values that could not be coerced to a valid value.
\item Use \code{\link[=mo_renamed]{mo_renamed()}} to get a \link{data.frame} with all values that could be coerced based on old, previously accepted taxonomic names.
}
}
\subsection{Microbial Prevalence of Pathogens in Humans}{
The coercion rules consider the prevalence of microorganisms in humans grouped into three groups, which is available as the \code{prevalence} columns in the \link{microorganisms} data set. The grouping into human pathogenic prevalence is explained in the section \emph{Matching Score for Microorganisms} below.
}
}
\section{Source}{
\enumerate{
\item Becker K. \emph{et al.} (2014). \strong{Coagulase-Negative Staphylococci.} \emph{Clin Microbiol Rev.} 27(4): 870-926; \doi{10.1128/CMR.00109-13}
\item Becker K. \emph{et al.} (2019). \strong{Implications of identifying the recently defined members of the \emph{S. aureus} complex, \emph{S. argenteus} and \emph{S. schweitzeri}: A position paper of members of the ESCMID Study Group for staphylococci and Staphylococcal Diseases (ESGS).} \emph{Clin Microbiol Infect}; \doi{10.1016/j.cmi.2019.02.028}
\item Becker K. \emph{et al.} (2020). \strong{Emergence of coagulase-negative staphylococci} \emph{Expert Rev Anti Infect Ther.} 18(4):349-366; \doi{10.1080/14787210.2020.1730813}
\item Lancefield R.C. (1933). \strong{A serological differentiation of human and other groups of hemolytic streptococci}. \emph{J Exp Med.} 57(4): 571-95; \doi{10.1084/jem.57.4.571}
\item Berends M.S. \emph{et al.} (2022). \strong{Trends in Occurrence and Phenotypic Resistance of Coagulase-Negative Staphylococci (CoNS) Found in Human Blood in the Northern Netherlands between 2013 and 2019} \emph{Microorganisms} 10(9), 1801; \doi{10.3390/microorganisms10091801}
\item Parte, A.C. \emph{et al.} (2020). \strong{List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ.} International Journal of Systematic and Evolutionary Microbiology, 70, 5607-5612; \doi{10.1099/ijsem.0.004332}. Accessed from \url{https://lpsn.dsmz.de} on 12 September, 2022.
\item GBIF Secretariat (November 26, 2021). GBIF Backbone Taxonomy. Checklist dataset \doi{10.15468/39omei}. Accessed from \url{https://www.gbif.org} on 12 September, 2022.
\item Public Health Information Network Vocabulary Access and Distribution System (PHIN VADS). US Edition of SNOMED CT from 1 September 2020. Value Set Name 'Microoganism', OID 2.16.840.1.114222.4.11.1009 (v12). URL: \url{https://phinvads.cdc.gov}
}
}
\section{Matching Score for Microorganisms}{
With ambiguous user input in \code{\link[=as.mo]{as.mo()}} and all the \code{\link[=mo_property]{mo_*}} functions, the returned results are chosen based on their matching score using \code{\link[=mo_matching_score]{mo_matching_score()}}. This matching score \eqn{m}, is calculated as:
\ifelse{latex}{\deqn{m_{(x, n)} = \frac{l_{n} - 0.5 \cdot \min \begin{cases}l_{n} \\ \textrm{lev}(x, n)\end{cases}}{l_{n} \cdot p_{n} \cdot k_{n}}}}{\ifelse{html}{\figure{mo_matching_score.png}{options: width="300" alt="mo matching score"}}{m(x, n) = ( l_n * min(l_n, lev(x, n) ) ) / ( l_n * p_n * k_n )}}
where:
\itemize{
\item \ifelse{html}{\out{x is the user input;}}{\eqn{x} is the user input;}
\item \ifelse{html}{\out{n is a taxonomic name (genus, species, and subspecies);}}{\eqn{n} is a taxonomic name (genus, species, and subspecies);}
\item \ifelse{html}{\out{ln is the length of n;}}{l_n is the length of \eqn{n};}
\item \ifelse{html}{\out{lev is the Levenshtein distance function, which counts any insertion, deletion and substitution as 1 that is needed to change x into n;}}{lev is the Levenshtein distance function, which counts any insertion, deletion and substitution as 1 that is needed to change \eqn{x} into \eqn{n};}
\item \ifelse{html}{\out{pn is the human pathogenic prevalence group of n, as described below;}}{p_n is the human pathogenic prevalence group of \eqn{n}, as described below;}
\item \ifelse{html}{\out{kn is the taxonomic kingdom of n, set as Bacteria = 1, Fungi = 2, Protozoa = 3, Archaea = 4, others = 5.}}{l_n is the taxonomic kingdom of \eqn{n}, set as Bacteria = 1, Fungi = 2, Protozoa = 3, Archaea = 4, others = 5.}
}
The grouping into human pathogenic prevalence (\eqn{p}) is based on experience from several microbiological laboratories in the Netherlands in conjunction with international reports on pathogen prevalence:
\strong{Group 1} (most prevalent microorganisms) consists of all microorganisms where the taxonomic class is Gammaproteobacteria or where the taxonomic genus is \emph{Enterococcus}, \emph{Staphylococcus} or \emph{Streptococcus}. This group consequently contains all common Gram-negative bacteria, such as \emph{Pseudomonas} and \emph{Legionella} and all species within the order Enterobacterales.
\strong{Group 2} consists of all microorganisms where the taxonomic phylum is Proteobacteria, Firmicutes, Actinobacteria or Sarcomastigophora, or where the taxonomic genus is \emph{Absidia}, \emph{Acanthamoeba}, \emph{Acholeplasma}, \emph{Acremonium}, \emph{Actinotignum}, \emph{Aedes}, \emph{Alistipes}, \emph{Alloprevotella}, \emph{Alternaria}, \emph{Amoeba}, \emph{Anaerosalibacter}, \emph{Ancylostoma}, \emph{Angiostrongylus}, \emph{Anisakis}, \emph{Anopheles}, \emph{Apophysomyces}, \emph{Arachnia}, \emph{Aspergillus}, \emph{Aureobasidium}, \emph{Bacteroides}, \emph{Basidiobolus}, \emph{Beauveria}, \emph{Bergeyella}, \emph{Blastocystis}, \emph{Blastomyces}, \emph{Borrelia}, \emph{Brachyspira}, \emph{Branhamella}, \emph{Butyricimonas}, \emph{Candida}, \emph{Capillaria}, \emph{Capnocytophaga}, \emph{Catabacter}, \emph{Cetobacterium}, \emph{Chaetomium}, \emph{Chlamydia}, \emph{Chlamydophila}, \emph{Chryseobacterium}, \emph{Chrysonilia}, \emph{Cladophialophora}, \emph{Cladosporium}, \emph{Conidiobolus}, \emph{Contracaecum}, \emph{Cordylobia}, \emph{Cryptococcus}, \emph{Curvularia}, \emph{Deinococcus}, \emph{Demodex}, \emph{Dermatobia}, \emph{Dientamoeba}, \emph{Diphyllobothrium}, \emph{Dirofilaria}, \emph{Dysgonomonas}, \emph{Echinostoma}, \emph{Elizabethkingia}, \emph{Empedobacter}, \emph{Entamoeba}, \emph{Enterobius}, \emph{Exophiala}, \emph{Exserohilum}, \emph{Fasciola}, \emph{Flavobacterium}, \emph{Fonsecaea}, \emph{Fusarium}, \emph{Fusobacterium}, \emph{Giardia}, \emph{Haloarcula}, \emph{Halobacterium}, \emph{Halococcus}, \emph{Hendersonula}, \emph{Heterophyes}, \emph{Histomonas}, \emph{Histoplasma}, \emph{Hymenolepis}, \emph{Hypomyces}, \emph{Hysterothylacium}, \emph{Leishmania}, \emph{Lelliottia}, \emph{Leptosphaeria}, \emph{Leptotrichia}, \emph{Lucilia}, \emph{Lumbricus}, \emph{Malassezia}, \emph{Malbranchea}, \emph{Metagonimus}, \emph{Microsporidium}, \emph{Microsporum}, \emph{Mortierella}, \emph{Mucor}, \emph{Mycocentrospora}, \emph{Mycoplasma}, \emph{Myroides}, \emph{Necator}, \emph{Nectria}, \emph{Ochroconis}, \emph{Odoribacter}, \emph{Oesophagostomum}, \emph{Oidiodendron}, \emph{Opisthorchis}, \emph{Ornithobacterium}, \emph{Parabacteroides}, \emph{Pediculus}, \emph{Pedobacter}, \emph{Phlebotomus}, \emph{Phocaeicola}, \emph{Phocanema}, \emph{Phoma}, \emph{Piedraia}, \emph{Pithomyces}, \emph{Pityrosporum}, \emph{Pneumocystis}, \emph{Porphyromonas}, \emph{Prevotella}, \emph{Pseudallescheria}, \emph{Pseudoterranova}, \emph{Pulex}, \emph{Rhizomucor}, \emph{Rhizopus}, \emph{Rhodotorula}, \emph{Riemerella}, \emph{Saccharomyces}, \emph{Sarcoptes}, \emph{Scolecobasidium}, \emph{Scopulariopsis}, \emph{Scytalidium}, \emph{Sphingobacterium}, \emph{Spirometra}, \emph{Spiroplasma}, \emph{Sporobolomyces}, \emph{Stachybotrys}, \emph{Streptobacillus}, \emph{Strongyloides}, \emph{Syngamus}, \emph{Taenia}, \emph{Tannerella}, \emph{Tenacibaculum}, \emph{Terrimonas}, \emph{Toxocara}, \emph{Treponema}, \emph{Trichinella}, \emph{Trichobilharzia}, \emph{Trichoderma}, \emph{Trichomonas}, \emph{Trichophyton}, \emph{Trichosporon}, \emph{Trichostrongylus}, \emph{Trichuris}, \emph{Tritirachium}, \emph{Trombicula}, \emph{Trypanosoma}, \emph{Tunga}, \emph{Ureaplasma}, \emph{Victivallis}, \emph{Wautersiella}, \emph{Weeksella} or \emph{Wuchereria}.
\strong{Group 3} consists of all other microorganisms.
All characters in \eqn{x} and \eqn{n} are ignored that are other than A-Z, a-z, 0-9, spaces and parentheses.
All matches are sorted descending on their matching score and for all user input values, the top match will be returned. This will lead to the effect that e.g., \code{"E. coli"} will return the microbial ID of \emph{Escherichia coli} (\eqn{m = 0.688}, a highly prevalent microorganism found in humans) and not \emph{Entamoeba coli} (\eqn{m = 0.079}, a less prevalent microorganism in humans), although the latter would alphabetically come first.
}
\section{Reference Data Publicly Available}{
All data sets in this \code{AMR} package (about microorganisms, antibiotics, R/SI interpretation, EUCAST rules, etc.) are publicly and freely available for download in the following formats: R, MS Excel, Apache Feather, Apache Parquet, SPSS, SAS, and Stata. We also provide tab-separated plain text files that are machine-readable and suitable for input in any software program, such as laboratory information systems. Please visit \href{https://msberends.github.io/AMR/articles/datasets.html}{our website for the download links}. The actual files are of course available on \href{https://github.com/msberends/AMR/tree/main/data-raw}{our GitHub repository}.
}
\examples{
\donttest{
# These examples all return "B_STPHY_AURS", the ID of S. aureus:
as.mo(c(
"sau", # WHONET code
"stau",
"STAU",
"staaur",
"S. aureus",
"S aureus",
"Staphylococcus aureus",
"Staphylococcus aureus (MRSA,",
"Zthafilokkoockus oureuz", # handles incorrect spelling
"MRSA", # Methicillin Resistant S. aureus
"VISA", # Vancomycin Intermediate S. aureus
"VRSA", # Vancomycin Resistant S. aureus
115329001 # SNOMED CT code
))
# Dyslexia is no problem - these all work:
as.mo(c(
"Ureaplasma urealyticum",
"Ureaplasma urealyticus",
"Ureaplasmium urealytica",
"Ureaplazma urealitycium"
))
as.mo("Streptococcus group A")
as.mo("S. epidermidis") # will remain species: B_STPHY_EPDR
as.mo("S. epidermidis", Becker = TRUE) # will not remain species: B_STPHY_CONS
as.mo("S. pyogenes") # will remain species: B_STRPT_PYGN
as.mo("S. pyogenes", Lancefield = TRUE) # will not remain species: B_STRPT_GRPA
# All mo_* functions use as.mo() internally too (see ?mo_property):
mo_genus("E. coli")
mo_gramstain("ESCO")
mo_is_intrinsic_resistant("ESCCOL", ab = "vanco")
}
}
\seealso{
\link{microorganisms} for the \link{data.frame} that is being used to determine ID's.
The \code{\link[=mo_property]{mo_*}} functions (such as \code{\link[=mo_genus]{mo_genus()}}, \code{\link[=mo_gramstain]{mo_gramstain()}}) to get properties based on the returned code.
}
\keyword{Becker}
\keyword{Lancefield}
\keyword{becker}
\keyword{guess}
\keyword{lancefield}
\keyword{mo}