Skip to contents

These functions determine which items in a vector can be considered (the start of) a new episode, based on the argument episode_days. This can be used to determine clinical episodes for any epidemiological analysis. The get_episode() function returns the index number of the episode per group, while the is_new_episode() function returns values TRUE/FALSE to indicate whether an item in a vector is the start of a new episode.

Usage

get_episode(x, episode_days, ...)

is_new_episode(x, episode_days, ...)

Arguments

x

vector of dates (class Date or POSIXt), will be sorted internally to determine episodes

episode_days

required episode length in days, can also be less than a day or Inf, see Details

...

ignored, only in place to allow future extensions

Value

  • get_episode(): a double vector

  • is_new_episode(): a logical vector

Details

Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least episode_days days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least episode_days days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.

The first_isolate() function is a wrapper around the is_new_episode() function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.

The dplyr package is not required for these functions to work, but these functions do support variable grouping and work conveniently inside dplyr verbs such as filter(), mutate() and summarise().

See also

Examples

# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 200), ]

get_episode(df$date, episode_days = 60) # indices
#>   [1] 18 57 46 24  3 28 41 20 44 57 51 63 66  9 10  6 40 61 57 42 60  2  8 28 39
#>  [26] 39  3  4 21 57  8 54 12 15 20 66 36 35 21 55 22 48 46 58 55 26 13 62  6 15
#>  [51] 39 34 17 15 36 54  8 10 51 38 35  4 13 30 17  4 37 35 53 43 62 25 64  7 46
#>  [76]  5 26 55 44 30  4 48 14 42 13 50 52 13  7 58 50 17  2 62 56 62 61 32  7 33
#> [101] 64 64 28 31 46  8 24 33  9 31 22 27 39 36 49 12  6 48 24 25 55 43 34 33  2
#> [126] 26 45 33 19 16 47  4 52  4 37 30  5 27 51  1 51 46 19 22 64  6 62 18 11 58
#> [151] 63 59 20 37 32 58  6 37 10  8 38 40 16 26  6 11 43 50  1 30 65 45  4 53 62
#> [176] 13 42 37 37 61 52 36 44 58 39 53 52  4 65 60 58 61 60  9 23 18 29 48 59 33
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#>   [1] FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE
#>  [13]  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE
#>  [25] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE
#>  [37]  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE
#>  [49] FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#>  [61] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#>  [73]  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
#>  [85] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE
#>  [97] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
#> [109] FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE
#> [121] FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE
#> [133] FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE
#> [145] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE
#> [157] FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
#> [169] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE
#> [181] FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE
#> [193]  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE

# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 2 × 46
#>   date       patient   age gender ward     mo           PEN   OXA   FLC   AMX  
#>   <date>     <chr>   <dbl> <chr>  <chr>    <mo>         <rsi> <rsi> <rsi> <rsi>
#> 1 2002-07-21 955940     82 F      Clinical B_PSDMN_AERG R     NA    NA    R    
#> 2 2002-07-30 218912     76 F      ICU      B_ESCHR_COLI R     NA    NA    NA   
#> # … with 36 more variables: AMC <rsi>, AMP <rsi>, TZP <rsi>, CZO <rsi>,
#> #   FEP <rsi>, CXM <rsi>, FOX <rsi>, CTX <rsi>, CAZ <rsi>, CRO <rsi>,
#> #   GEN <rsi>, TOB <rsi>, AMK <rsi>, KAN <rsi>, TMP <rsi>, SXT <rsi>,
#> #   NIT <rsi>, FOS <rsi>, LNZ <rsi>, CIP <rsi>, MFX <rsi>, VAN <rsi>,
#> #   TEC <rsi>, TCY <rsi>, TGC <rsi>, DOX <rsi>, ERY <rsi>, CLI <rsi>,
#> #   AZM <rsi>, IPM <rsi>, MEM <rsi>, MTR <rsi>, CHL <rsi>, COL <rsi>,
#> #   MUP <rsi>, RIF <rsi>

# the functions also work for less than a day, e.g. to include one per hour:
get_episode(c(
  Sys.time(),
  Sys.time() + 60 * 60
),
episode_days = 1 / 24
)
#> [1] 1 2

# \donttest{
if (require("dplyr")) {
  # is_new_episode() can also be used in dplyr verbs to determine patient
  # episodes based on any (combination of) grouping variables:
  df %>%
    mutate(condition = sample(
      x = c("A", "B", "C"),
      size = 200,
      replace = TRUE
    )) %>%
    group_by(condition) %>%
    mutate(new_episode = is_new_episode(date, 365)) %>%
    select(patient, date, condition, new_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   condition [3]
#>    patient date       condition new_episode
#>    <chr>   <date>     <chr>     <lgl>      
#>  1 A90606  2006-01-19 B         FALSE      
#>  2 F76601  2015-09-20 B         FALSE      
#>  3 824233  2012-07-10 A         FALSE      
#>  4 3C8163  2007-06-26 B         FALSE      
#>  5 955940  2002-07-21 B         FALSE      
#>  6 D81577  2008-05-12 B         FALSE      
#>  7 675872  2011-03-03 B         TRUE       
#>  8 54890C  2006-05-26 B         FALSE      
#>  9 967247  2012-02-06 A         FALSE      
#> 10 0DBF93  2015-10-12 C         FALSE      
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward, patient) %>%
    transmute(date,
      patient,
      new_index = get_episode(date, 60),
      new_logical = is_new_episode(date, 60)
    )
}
#> # A tibble: 200 × 5
#> # Groups:   ward, patient [183]
#>    ward     date       patient new_index new_logical
#>    <chr>    <date>     <chr>       <dbl> <lgl>      
#>  1 Clinical 2006-01-19 A90606          1 TRUE       
#>  2 Clinical 2015-09-20 F76601          1 TRUE       
#>  3 Clinical 2012-07-10 824233          1 TRUE       
#>  4 Clinical 2007-06-26 3C8163          1 TRUE       
#>  5 Clinical 2002-07-21 955940          1 TRUE       
#>  6 Clinical 2008-05-12 D81577          1 TRUE       
#>  7 Clinical 2011-03-03 675872          1 TRUE       
#>  8 Clinical 2006-05-26 54890C          1 TRUE       
#>  9 ICU      2012-02-06 967247          1 TRUE       
#> 10 Clinical 2015-10-12 0DBF93          1 TRUE       
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward) %>%
    summarise(
      n_patients = n_distinct(patient),
      n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
      n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
      n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
    )
}
#> # A tibble: 3 × 5
#>   ward       n_patients n_episodes_365 n_episodes_60 n_episodes_30
#>   <chr>           <int>          <int>         <int>         <int>
#> 1 Clinical          117             14            58            79
#> 2 ICU                56             11            30            41
#> 3 Outpatient         10              5            10            10
if (require("dplyr")) {

  # grouping on patients and microorganisms leads to the same
  # results as first_isolate() when using 'episode-based':
  x <- df %>%
    filter_first_isolate(
      include_unknown = TRUE,
      method = "episode-based"
    )

  y <- df %>%
    group_by(patient, mo) %>%
    filter(is_new_episode(date, 365)) %>%
    ungroup()

  identical(x, y)
}
#> Including isolates from ICU.
#> [1] FALSE
if (require("dplyr")) {

  # but is_new_episode() has a lot more flexibility than first_isolate(),
  # since you can now group on anything that seems relevant:
  df %>%
    group_by(patient, mo, ward) %>%
    mutate(flag_episode = is_new_episode(date, 365)) %>%
    select(group_vars(.), flag_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   patient, mo, ward [191]
#>    patient mo           ward     flag_episode
#>    <chr>   <mo>         <chr>    <lgl>       
#>  1 A90606  B_STRPT_PNMN Clinical TRUE        
#>  2 F76601  B_ESCHR_COLI Clinical TRUE        
#>  3 824233  B_STPHY_AURS Clinical TRUE        
#>  4 3C8163  B_PSDMN_AERG Clinical TRUE        
#>  5 955940  B_PSDMN_AERG Clinical TRUE        
#>  6 D81577  B_HMPHL_INFL Clinical TRUE        
#>  7 675872  B_BCTRD_FRGL Clinical TRUE        
#>  8 54890C  B_ESCHR_COLI Clinical TRUE        
#>  9 967247  B_STPHY_CONS ICU      TRUE        
#> 10 0DBF93  B_STPHY_CPTS Clinical TRUE        
#> # … with 190 more rows
# }