# ==================================================================== # # TITLE # # Antimicrobial Resistance (AMR) Data Analysis for R # # # # SOURCE # # https://github.com/msberends/AMR # # # # LICENCE # # (c) 2018-2022 Berends MS, Luz CF et al. # # Developed at the University of Groningen, the Netherlands, in # # collaboration with non-profit organisations Certe Medical # # Diagnostics & Advice, and University Medical Center Groningen. # # # # This R package is free software; you can freely use and distribute # # it for both personal and commercial purposes under the terms of the # # GNU General Public License version 2.0 (GNU GPL-2), as published by # # the Free Software Foundation. # # We created this package for both routine data analysis and academic # # research and it was publicly released in the hope that it will be # # useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. # # # # Visit our website for the full manual and a complete tutorial about # # how to conduct AMR data analysis: https://msberends.github.io/AMR/ # # ==================================================================== # # ------------------------------------------------ # THIS FILE WAS CREATED AUTOMATICALLY! # Source file: data-raw/reproduction_of_poorman.R # ------------------------------------------------ # poorman: a package to replace all dplyr functions with base R so we can lose dependency on dplyr. # These functions were downloaded from https://github.com/nathaneastwood/poorman, # from this commit: https://github.com/nathaneastwood/poorman/tree/52eb6947e0b4430cd588976ed8820013eddf955f. # # All functions are prefixed with 'pm_' to make it obvious that they are dplyr substitutes. # # All code below was released under MIT license, that permits 'free of charge, to any person obtaining a # copy of the software and associated documentation files (the "Software"), to deal in the Software # without restriction, including without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software # is furnished to do so', given that a copyright notice is given in the software. # # Copyright notice on 19 September 2020, the day this code was downloaded, as found on # https://github.com/nathaneastwood/poorman/blob/52eb6947e0b4430cd588976ed8820013eddf955f/LICENSE: # YEAR: 2020 # COPYRIGHT HOLDER: Nathan Eastwood pm_arrange <- function(.data, ...) { pm_check_is_dataframe(.data) if ("grouped_data" %in% class(.data)) { pm_arrange.grouped_data(.data, ...) } else { pm_arrange.default(.data, ...) } } pm_arrange.default <- function(.data, ...) { pm_context$setup(.data) on.exit(pm_context$clean(), add = TRUE) rows <- eval(substitute(order(...)), envir = pm_context$.data) .data[rows, , drop = FALSE] } pm_arrange.grouped_data <- function(.data, ...) { pm_apply_grouped_function("pm_arrange", .data, drop = TRUE, ...) } pm_between <- function(x, left, right) { if (!is.null(attr(x, "class")) && !inherits(x, c("Date", "POSIXct"))) { warning("`pm_between()` called on numeric vector with S3 class") } if (!is.double(x)) x <- as.numeric(x) x >= as.numeric(left) & x <= as.numeric(right) } pm_context <- new.env() # Data pm_context$setup <- function(.data) pm_context$.data <- .data pm_context$get_data <- function() pm_context$.data pm_context$get_nrow <- function() nrow(pm_context$.data) pm_context$get_colnames <- function() colnames(pm_context$.data) pm_context$clean <- function() rm(list = c(".data"), envir = pm_context) pm_n <- function() { pm_check_group_pm_context("`pm_n()`") pm_context$get_nrow() } pm_cur_data <- function() { pm_check_group_pm_context("`pm_cur_data()`") data <- pm_context$get_data() data[, !(colnames(data) %in% pm_get_groups(data)), drop = FALSE] } pm_cur_group <- function() { pm_check_group_pm_context("`pm_cur_group()`") data <- pm_context$get_data() res <- data[1L, pm_get_groups(data), drop = FALSE] rownames(res) <- NULL res } pm_cur_group_id <- function() { pm_check_group_pm_context("`pm_cur_group_id()`") data <- pm_context$get_data() res <- data[1L, pm_get_groups(data), drop = FALSE] details <- pm_get_group_details(data) details[, ".group_id"] <- seq_len(nrow(details)) res <- suppressMessages(pm_semi_join(details, res)) list(res[, ".group_id"]) } pm_cur_group_rows <- function() { pm_check_group_pm_context("`pm_cur_group_rows()`") data <- pm_context$get_data() res <- data[1L, pm_get_groups(data), drop = FALSE] res <- suppressMessages(pm_semi_join(pm_get_group_details(data), res)) unlist(res[, ".rows"]) } pm_check_group_pm_context <- function(fn) { if (is.null(pm_context$.data)) { stop(fn, " must only be used inside poorman verbs") } } pm_count <- function(x, ..., wt = NULL, sort = FALSE, name = NULL) { pm_groups <- pm_get_groups(x) if (!missing(...)) x <- pm_group_by(x, ..., .add = TRUE) wt <- pm_deparse_var(wt) res <- do.call(pm_tally, list(x, wt, sort, name)) if (length(pm_groups) > 0L) res <- do.call(pm_group_by, list(res, as.name(pm_groups))) res } pm_tally <- function(x, wt = NULL, sort = FALSE, name = NULL) { name <- pm_check_name(x, name) wt <- pm_deparse_var(wt) res <- do.call(pm_summarise, pm_set_names(list(x, pm_tally_n(x, wt)), c(".data", name))) res <- pm_ungroup(res) if (isTRUE(sort)) res <- do.call(pm_arrange, list(res, call("pm_desc", as.name(name)))) rownames(res) <- NULL res } pm_add_count <- function(x, ..., wt = NULL, sort = FALSE, name = NULL) { name <- pm_check_name(x, name) row_names <- rownames(x) wt <- pm_deparse_var(wt) if (!missing(...)) x <- pm_group_by(x, ..., .add = TRUE) res <- do.call(pm_add_tally, list(x, wt, sort, name)) res[row_names, ] } pm_add_tally <- function(x, wt = NULL, sort = FALSE, name = NULL) { wt <- pm_deparse_var(wt) pm_n <- pm_tally_n(x, wt) name <- pm_check_name(x, name) res <- do.call(pm_mutate, pm_set_names(list(x, pm_n), c(".data", name))) if (isTRUE(sort)) { do.call(pm_arrange, list(res, call("pm_desc", as.name(name)))) } else { res } } pm_tally_n <- function(x, wt) { if (is.null(wt) && "pm_n" %in% colnames(x)) { message("Using `pm_n` as weighting variable") wt <- "pm_n" } pm_context$setup(.data = x) on.exit(pm_context$clean(), add = TRUE) if (is.null(wt)) { call("pm_n") } else { call("sum", as.name(wt), na.rm = TRUE) } } pm_check_name <- function(df, name) { if (is.null(name)) { if ("pm_n" %in% colnames(df)) { stop( "Column 'pm_n' is already present in output\n", "* Use `name = \"new_name\"` to pick a new name" ) } return("pm_n") } if (!is.character(name) || length(name) != 1) { stop("`name` must be a single string") } name } pm_desc <- function(x) -xtfrm(x) pm_distinct <- function(.data, ...) { pm_check_is_dataframe(.data) if ("grouped_data" %in% class(.data)) { pm_distinct.grouped_data(.data, ...) } else { pm_distinct.default(.data, ...) } } pm_distinct.default <- function(.data, ..., .keep_all = FALSE) { if (ncol(.data) == 0L) { return(.data[1, ]) } cols <- pm_deparse_dots(...) col_names <- names(cols) col_len <- length(cols) if (is.null(col_names) && col_len > 0L) names(cols) <- cols if (col_len == 0L) { res <- .data } else { res <- pm_mutate(.data, ...) col_names <- names(cols) res <- if (!is.null(col_names)) { zero_names <- nchar(col_names) == 0L if (any(zero_names)) { names(cols)[zero_names] <- cols[zero_names] col_names <- names(cols) } suppressMessages(pm_select(res, col_names)) } else { suppressMessages(pm_select(res, cols)) } } res <- unique(res) if (isTRUE(.keep_all)) { res <- cbind(res, .data[rownames(res), setdiff(colnames(.data), colnames(res)), drop = FALSE]) } common_cols <- c(intersect(colnames(.data), colnames(res)), setdiff(col_names, colnames(.data))) if (length(common_cols) > 0L) res[, common_cols, drop = FALSE] else res } pm_distinct.grouped_data <- function(.data, ..., .keep_all = FALSE) { pm_apply_grouped_function("pm_distinct", .data, drop = TRUE, ..., .keep_all = .keep_all) } pm_eval_env <- new.env() pm_filter <- function(.data, ...) { pm_check_is_dataframe(.data) if ("grouped_data" %in% class(.data)) { pm_filter.grouped_data(.data, ...) } else { pm_filter.default(.data, ...) } } pm_filter.default <- function(.data, ...) { conditions <- pm_dotdotdot(...) cond_class <- vapply(conditions, typeof, NA_character_) if (any(cond_class != "language")) stop("Conditions must be logical vectors") pm_context$setup(.data) on.exit(pm_context$clean(), add = TRUE) pm_eval_env$env <- parent.frame() on.exit(rm(list = "env", envir = pm_eval_env), add = TRUE) rows <- lapply( conditions, function(cond, frame) eval(cond, pm_context$.data, frame), frame = pm_eval_env$env ) rows <- Reduce("&", rows) .data[rows & !is.na(rows), ] } pm_filter.grouped_data <- function(.data, ...) { rows <- rownames(.data) res <- pm_apply_grouped_function("pm_filter", .data, drop = TRUE, ...) res[rows[rows %in% rownames(res)], ] } pm_group_by <- function(.data, ..., .add = FALSE) { pm_check_is_dataframe(.data) pre_groups <- pm_get_groups(.data) pm_groups <- pm_deparse_dots(...) if (isTRUE(.add)) pm_groups <- unique(c(pre_groups, pm_groups)) unknown <- !(pm_groups %in% colnames(.data)) if (any(unknown)) stop("Invalid pm_groups: ", pm_groups[unknown]) class(.data) <- c("grouped_data", class(.data)) pm_set_groups(.data, pm_groups) } pm_ungroup <- function(x, ...) { pm_check_is_dataframe(x) rm_groups <- pm_deparse_dots(...) pm_groups <- pm_get_groups(x) if (length(rm_groups) == 0L) rm_groups <- pm_groups x <- pm_set_groups(x, pm_groups[!(pm_groups %in% rm_groups)]) if (length(attr(x, "pm_groups")) == 0L) { attr(x, "pm_groups") <- NULL class(x) <- class(x)[!(class(x) %in% "grouped_data")] } x } pm_set_groups <- function(x, pm_groups) { attr(x, "pm_groups") <- if (is.null(pm_groups) || length(pm_groups) == 0L) { NULL } else { pm_group_data_worker(x, pm_groups) } x } pm_get_groups <- function(x) { pm_groups <- attr(x, "pm_groups", exact = TRUE) if (is.null(pm_groups)) character(0) else colnames(pm_groups)[!colnames(pm_groups) %in% c(".group_id", ".rows")] } pm_get_group_details <- function(x) { pm_groups <- attr(x, "pm_groups", exact = TRUE) if (is.null(pm_groups)) character(0) else pm_groups } pm_has_groups <- function(x) { pm_groups <- pm_get_groups(x) if (length(pm_groups) == 0L) FALSE else TRUE } pm_apply_grouped_function <- function(fn, .data, drop = FALSE, ...) { pm_groups <- pm_get_groups(.data) grouped <- pm_split_into_groups(.data, pm_groups, drop) res <- do.call(rbind, unname(lapply(grouped, fn, ...))) if (any(pm_groups %in% colnames(res))) { class(res) <- c("grouped_data", class(res)) res <- pm_set_groups(res, pm_groups[pm_groups %in% colnames(res)]) } res } pm_print.grouped_data <- function(x, ..., digits = NULL, quote = FALSE, right = TRUE, row.names = TRUE, max = NULL) { class(x) <- "data.frame" print(x, ..., digits = digits, quote = quote, right = right, row.names = row.names, max = max) cat("\nGroups: ", paste(pm_get_groups(x), collapse = ", "), "\n\n") } pm_group_data <- function(.data) { if (!pm_has_groups(.data)) { return(data.frame(.rows = I(list(seq_len(nrow(.data)))))) } pm_groups <- pm_get_groups(.data) pm_group_data_worker(.data, pm_groups) } pm_group_data_worker <- function(.data, pm_groups) { res <- unique(.data[, pm_groups, drop = FALSE]) class(res) <- "data.frame" nrow_res <- nrow(res) rows <- rep(list(NA), nrow_res) for (i in seq_len(nrow_res)) { rows[[i]] <- which(interaction(.data[, pm_groups]) %in% interaction(res[i, pm_groups])) } res$`.rows` <- rows res <- res[do.call(order, lapply(pm_groups, function(x) res[, x])), , drop = FALSE] rownames(res) <- NULL res } pm_group_rows <- function(.data) { pm_group_data(.data)[[".rows"]] } pm_group_indices <- function(.data) { if (!pm_has_groups(.data)) { return(rep(1L, nrow(.data))) } pm_groups <- pm_get_groups(.data) res <- unique(.data[, pm_groups, drop = FALSE]) res <- res[do.call(order, lapply(pm_groups, function(x) res[, x])), , drop = FALSE] class(res) <- "data.frame" nrow_data <- nrow(.data) rows <- rep(NA, nrow_data) for (i in seq_len(nrow_data)) { rows[i] <- which(interaction(res[, pm_groups]) %in% interaction(.data[i, pm_groups])) } rows } pm_group_vars <- function(x) { pm_get_groups(x) } pm_groups <- function(x) { lapply(pm_get_groups(x), as.symbol) } pm_group_size <- function(x) { lengths(pm_group_rows(x)) } pm_n_groups <- function(x) { nrow(pm_group_data(x)) } # pm_group_split <- function(.data, ..., .keep = TRUE) { # dots_len <- ...length() > 0L # if (pm_has_groups(.data) && isTRUE(dots_len)) { # warning("... is ignored in pm_group_split(), please use pm_group_by(..., .add = TRUE) %pm>% pm_group_split()") # } # if (!pm_has_groups(.data) && isTRUE(dots_len)) { # .data <- pm_group_by(.data, ...) # } # if (!pm_has_groups(.data) && isFALSE(dots_len)) { # return(list(.data)) # } # pm_context$setup(.data) # on.exit(pm_context$clean(), add = TRUE) # pm_groups <- pm_get_groups(.data) # attr(pm_context$.data, "pm_groups") <- NULL # res <- pm_split_into_groups(pm_context$.data, pm_groups) # names(res) <- NULL # if (isFALSE(.keep)) { # res <- lapply(res, function(x) x[, !colnames(x) %in% pm_groups]) # } # any_empty <- unlist(lapply(res, function(x) !(nrow(x) == 0L))) # res[any_empty] # } pm_group_keys <- function(.data) { pm_groups <- pm_get_groups(.data) pm_context$setup(.data) res <- pm_context$.data[, pm_context$get_colnames() %in% pm_groups, drop = FALSE] res <- res[!duplicated(res), , drop = FALSE] if (nrow(res) == 0L) { return(res) } class(res) <- "data.frame" res <- res[do.call(order, lapply(pm_groups, function(x) res[, x])), , drop = FALSE] rownames(res) <- NULL res } pm_split_into_groups <- function(.data, pm_groups, drop = FALSE, ...) { class(.data) <- "data.frame" group_factors <- lapply(pm_groups, function(x, .data) as.factor(.data[, x]), .data) split(x = .data, f = group_factors, drop = drop, ...) } pm_if_else <- function(condition, true, false, missing = NULL) { if (!is.logical(condition)) stop("`condition` must be a logical vector.") cls_true <- class(true) cls_false <- class(false) cls_missing <- class(missing) if (!identical(cls_true, cls_false)) { stop("The class of `true` <", class(true), "> is not the same as the class of `false` <", class(false), ">") } if (!is.null(missing) && !identical(cls_true, cls_missing)) { stop("`missing` must be a ", cls_true, " vector, not a ", cls_missing, " vector.") } res <- ifelse(condition, true, false) if (!is.null(missing)) res[is.na(res)] <- missing attributes(res) <- attributes(true) res } pm_anti_join <- function(x, y, by = NULL) { pm_filter_join_worker(x, y, by, type = "anti") } pm_semi_join <- function(x, y, by = NULL) { pm_filter_join_worker(x, y, by, type = "semi") } pm_filter_join_worker <- function(x, y, by = NULL, type = c("anti", "semi")) { type <- match.arg(type, choices = c("anti", "semi"), several.ok = FALSE) if (is.null(by)) { by <- intersect(names(x), names(y)) pm_join_message(by) } rows <- interaction(x[, by]) %in% interaction(y[, by]) if (type == "anti") rows <- !rows res <- x[rows, , drop = FALSE] rownames(res) <- NULL res } pm_inner_join <- function(x, y, by = NULL, suffix = c(".x", ".y")) { pm_join_worker(x = x, y = y, by = by, suffix = suffix, sort = FALSE) } # pm_left_join <- function(x, y, by = NULL, suffix = c(".x", ".y")) { # pm_join_worker(x = x, y = y, by = by, suffix = suffix, all.x = TRUE) # } pm_right_join <- function(x, y, by = NULL, suffix = c(".x", ".y")) { pm_join_worker(x = x, y = y, by = by, suffix = suffix, all.y = TRUE) } pm_full_join <- function(x, y, by = NULL, suffix = c(".x", ".y")) { pm_join_worker(x = x, y = y, by = by, suffix = suffix, all = TRUE) } pm_join_worker <- function(x, y, by = NULL, suffix = c(".x", ".y"), ...) { x[, ".join_id"] <- seq_len(nrow(x)) if (is.null(by)) { by <- intersect(names(x), names(y)) pm_join_message(by) merged <- merge(x = x, y = y, by = by, suffixes = suffix, ...)[, union(names(x), names(y))] } else if (is.null(names(by))) { merged <- merge(x = x, y = y, by = by, suffixes = suffix, ...) } else { merged <- merge(x = x, y = y, by.x = names(by), by.y = by, suffixes = suffix, ...) } merged <- merged[order(merged[, ".join_id"]), colnames(merged) != ".join_id"] rownames(merged) <- NULL merged } pm_join_message <- function(by) { if (length(by) > 1L) { message("Joining, by = c(\"", paste0(by, collapse = "\", \""), "\")\n", sep = "") } else { message("Joining, by = \"", by, "\"\n", sep = "") } } pm_lag <- function(x, pm_n = 1L, default = NA) { if (inherits(x, "ts")) stop("`x` must be a vector, not a `ts` object, do you want `stats::pm_lag()`?") if (length(pm_n) != 1L || !is.numeric(pm_n) || pm_n < 0L) stop("`pm_n` must be a nonnegative integer scalar") if (pm_n == 0L) { return(x) } tryCatch( storage.mode(default) <- typeof(x), warning = function(w) { stop("Cannot convert `default` <", typeof(default), "> to `x` <", typeof(x), ">") } ) xlen <- length(x) pm_n <- pmin(pm_n, xlen) res <- c(rep(default, pm_n), x[seq_len(xlen - pm_n)]) attributes(res) <- attributes(x) res } pm_lead <- function(x, pm_n = 1L, default = NA) { if (length(pm_n) != 1L || !is.numeric(pm_n) || pm_n < 0L) stop("pm_n must be a nonnegative integer scalar") if (pm_n == 0L) { return(x) } tryCatch( storage.mode(default) <- typeof(x), warning = function(w) { stop("Cannot convert `default` <", typeof(default), "> to `x` <", typeof(x), ">") } ) xlen <- length(x) pm_n <- pmin(pm_n, xlen) res <- c(x[-seq_len(pm_n)], rep(default, pm_n)) attributes(res) <- attributes(x) res } pm_mutate <- function(.data, ...) { pm_check_is_dataframe(.data) if ("grouped_data" %in% class(.data)) { pm_mutate.grouped_data(.data, ...) } else { pm_mutate.default(.data, ...) } } pm_mutate.default <- function(.data, ...) { conditions <- pm_dotdotdot(..., .impute_names = TRUE) .data[, setdiff(names(conditions), names(.data))] <- NA pm_context$setup(.data) on.exit(pm_context$clean(), add = TRUE) for (i in seq_along(conditions)) { pm_context$.data[, names(conditions)[i]] <- eval(conditions[[i]], envir = pm_context$.data) } pm_context$.data } pm_mutate.grouped_data <- function(.data, ...) { rows <- rownames(.data) res <- pm_apply_grouped_function("pm_mutate", .data, drop = TRUE, ...) res[rows, ] } pm_n_distinct <- function(..., na.rm = FALSE) { res <- c(...) if (is.list(res)) { return(nrow(unique(as.data.frame(res, stringsAsFactors = FALSE)))) } if (isTRUE(na.rm)) res <- res[!is.na(res)] length(unique(res)) } pm_na_if <- function(x, y) { y_len <- length(y) x_len <- length(x) if (!(y_len %in% c(1L, x_len))) stop("`y` must be length ", x_len, " (same as `x`) or 1, not ", y_len) x[x == y] <- NA x } pm_near <- function(x, y, tol = .Machine$double.eps^0.5) { abs(x - y) < tol } `%pm>%` <- function(lhs, rhs) { lhs <- substitute(lhs) rhs <- substitute(rhs) eval(as.call(c(rhs[[1L]], lhs, as.list(rhs[-1L]))), envir = parent.frame()) } pm_pull <- function(.data, var = -1) { var_deparse <- pm_deparse_var(var) col_names <- colnames(.data) if (!(var_deparse %in% col_names) && grepl("^[[:digit:]]+L|[[:digit:]]", var_deparse)) { var <- as.integer(gsub("L", "", var_deparse)) var <- pm_if_else(var < 1L, rev(col_names)[abs(var)], col_names[var]) } else if (var_deparse %in% col_names) { var <- var_deparse } .data[, var, drop = TRUE] } pm_set_names <- function(object = nm, nm) { names(object) <- nm object } pm_vec_head <- function(x, pm_n = 6L, ...) { stopifnot(length(pm_n) == 1L) pm_n <- if (pm_n < 0L) max(length(x) + pm_n, 0L) else min(pm_n, length(x)) x[seq_len(pm_n)] } pm_relocate <- function(.data, ..., .before = NULL, .after = NULL) { pm_check_is_dataframe(.data) data_names <- colnames(.data) col_pos <- pm_select_positions(.data, ...) .before <- pm_deparse_var(.before) .after <- pm_deparse_var(.after) has_before <- !is.null(.before) has_after <- !is.null(.after) if (has_before && has_after) { stop("You must supply only one of `.before` and `.after`") } else if (has_before) { pm_where <- min(match(.before, data_names)) col_pos <- c(setdiff(col_pos, pm_where), pm_where) } else if (has_after) { pm_where <- max(match(.after, data_names)) col_pos <- c(pm_where, setdiff(col_pos, pm_where)) } else { pm_where <- 1L col_pos <- union(col_pos, pm_where) } lhs <- setdiff(seq(1L, pm_where - 1L), col_pos) rhs <- setdiff(seq(pm_where + 1L, ncol(.data)), col_pos) col_pos <- unique(c(lhs, col_pos, rhs)) col_pos <- col_pos[col_pos <= length(data_names)] res <- .data[col_pos] if (pm_has_groups(.data)) res <- pm_set_groups(res, pm_get_groups(.data)) res } pm_rename <- function(.data, ...) { pm_check_is_dataframe(.data) new_names <- names(pm_deparse_dots(...)) if (length(new_names) == 0L) { warning("You didn't give any new names") return(.data) } col_pos <- pm_select_positions(.data, ...) old_names <- colnames(.data)[col_pos] new_names_zero <- nchar(new_names) == 0L if (any(new_names_zero)) { warning("You didn't provide new names for: ", paste0("`", old_names[new_names_zero], collapse = ", "), "`") new_names[new_names_zero] <- old_names[new_names_zero] } colnames(.data)[col_pos] <- new_names .data } pm_rename_with <- function(.data, .fn, .cols = pm_everything(), ...) { if (!is.function(.fn)) stop("`", .fn, "` is not a valid function") grouped <- inherits(.data, "grouped_data") if (grouped) grp_pos <- which(colnames(.data) %in% pm_group_vars(.data)) col_pos <- eval(substitute(pm_select_positions(.data, .cols))) cols <- colnames(.data)[col_pos] new_cols <- .fn(cols, ...) if (any(duplicated(new_cols))) { stop("New names must be unique however `", deparse(substitute(.fn)), "` returns duplicate column names") } colnames(.data)[col_pos] <- new_cols if (grouped) .data <- pm_set_groups(.data, colnames(.data)[grp_pos]) .data } pm_replace_with <- function(x, i, val, arg_name) { if (is.null(val)) { return(x) } pm_check_length(val, x, arg_name) pm_check_type(val, x, arg_name) pm_check_class(val, x, arg_name) i[is.na(i)] <- FALSE if (length(val) == 1L) { x[i] <- val } else { x[i] <- val[i] } x } pm_check_length <- function(x, y, arg_name) { length_x <- length(x) length_y <- length(y) if (all(length_x %in% c(1L, length_y))) { return() } if (length_y == 1) { stop(arg_name, " must be length 1, not ", paste(length_x, sep = ", ")) } else { stop(arg_name, " must be length ", length_y, " or 1, not ", length_x) } } pm_check_type <- function(x, y, arg_name) { x_type <- typeof(x) y_type <- typeof(y) if (identical(x_type, y_type)) { return() } stop(arg_name, " must be `", y_type, "`, not `", x_type, "`") } pm_check_class <- function(x, y, arg_name) { if (!is.object(x)) { return() } exp_classes <- class(y) out_classes <- class(x) if (identical(out_classes, exp_classes)) { return() } stop(arg_name, " must have class `", exp_classes, "`, not class `", out_classes, "`") } pm_rownames_to_column <- function(.data, var = "rowname") { pm_check_is_dataframe(.data) col_names <- colnames(.data) if (var %in% col_names) stop("Column `", var, "` already exists in `.data`") .data[, var] <- rownames(.data) rownames(.data) <- NULL .data[, c(var, setdiff(col_names, var))] } pm_starts_with <- function(match, ignore.case = TRUE, vars = pm_peek_vars()) { grep(pattern = paste0("^", paste0(match, collapse = "|^")), x = vars, ignore.case = ignore.case) } pm_ends_with <- function(match, ignore.case = TRUE, vars = pm_peek_vars()) { grep(pattern = paste0(paste0(match, collapse = "$|"), "$"), x = vars, ignore.case = ignore.case) } pm_contains <- function(match, ignore.case = TRUE, vars = pm_peek_vars()) { pm_matches <- lapply( match, function(x) { if (isTRUE(ignore.case)) { match_u <- toupper(x) match_l <- tolower(x) pos_u <- grep(pattern = match_u, x = toupper(vars), fixed = TRUE) pos_l <- grep(pattern = match_l, x = tolower(vars), fixed = TRUE) unique(c(pos_l, pos_u)) } else { grep(pattern = x, x = vars, fixed = TRUE) } } ) unique(unlist(pm_matches)) } pm_matches <- function(match, ignore.case = TRUE, perl = FALSE, vars = pm_peek_vars()) { grep(pattern = match, x = vars, ignore.case = ignore.case, perl = perl) } pm_num_range <- function(prefix, range, width = NULL, vars = pm_peek_vars()) { if (!is.null(width)) { range <- sprintf(paste0("%0", width, "d"), range) } find <- paste0(prefix, range) if (any(duplicated(vars))) { stop("Column names must be unique") } else { x <- match(find, vars) x[!is.na(x)] } } pm_all_of <- function(x, vars = pm_peek_vars()) { x_ <- !x %in% vars if (any(x_)) { which_x_ <- which(x_) if (length(which_x_) == 1L) { stop("The column ", x[which_x_], " does not exist.") } else { stop("The columns ", paste(x[which_x_], collapse = ", "), " do not exist.") } } else { which(vars %in% x) } } pm_any_of <- function(x, vars = pm_peek_vars()) { which(vars %in% x) } pm_everything <- function(vars = pm_peek_vars()) { seq_along(vars) } pm_last_col <- function(offset = 0L, vars = pm_peek_vars()) { if (!pm_is_wholenumber(offset)) stop("`offset` must be an integer") pm_n <- length(vars) if (offset && pm_n <= offset) { stop("`offset` must be smaller than the number of `vars`") } else if (pm_n == 0) { stop("Can't pm_select last column when `vars` is empty") } else { pm_n - offset } } pm_peek_vars <- function() { pm_select_env$get_colnames() } pm_select_positions <- function(.data, ..., .group_pos = FALSE) { cols <- pm_dotdotdot(...) pm_select_env$setup(.data = .data, calling_frame = parent.frame(2L)) on.exit(pm_select_env$clean(), add = TRUE) data_names <- pm_select_env$get_colnames() pos <- unlist(lapply(cols, pm_eval_expr)) col_len <- pm_select_env$get_ncol() if (any(pos > col_len)) { oor <- pos[which(pos > col_len)] oor_len <- length(oor) stop( "Location", if (oor_len > 1) "s " else " ", pm_collapse_to_sentence(oor), if (oor_len > 1) " don't " else " doesn't ", "exist. There are only ", col_len, " columns." ) } if (isTRUE(.group_pos)) { pm_groups <- pm_get_groups(.data) missing_groups <- !(pm_groups %in% cols) if (any(missing_groups)) { sel_missing <- pm_groups[missing_groups] message("Adding missing grouping variables: `", paste(sel_missing, collapse = "`, `"), "`") readd <- match(sel_missing, data_names) if (length(names(cols)) > 0L) names(readd) <- data_names[readd] pos <- c(readd, pos) } } pos[!duplicated(pos)] } pm_eval_expr <- function(x) { type <- typeof(x) switch(type, "integer" = x, "double" = as.integer(x), "character" = pm_select_char(x), "symbol" = pm_select_symbol(x), "language" = pm_eval_call(x), stop("Expressions of type <", typeof(x), "> cannot be evaluated for use when subsetting.") ) } pm_select_char <- function(expr) { pos <- match(expr, pm_select_env$get_colnames()) if (is.na(pos)) stop("Column `", expr, "` does not exist") pos } pm_select_symbol <- function(expr) { expr_name <- as.character(expr) if (grepl("^is\\.", expr_name) && pm_is_function(expr)) { stop( "Predicate functions must be wrapped in `pm_where()`.\n\n", sprintf(" data %%pm>%% pm_select(pm_where(%s))", expr_name) ) } res <- try(pm_select_char(as.character(expr)), silent = TRUE) if (inherits(res, "try-error")) { res <- tryCatch( unlist(lapply(eval(expr, envir = pm_select_env$calling_frame), pm_eval_expr)), error = function(e) stop("Column ", expr, " does not exist.") ) } res } pm_eval_call <- function(x) { type <- as.character(x[[1]]) switch(type, `:` = pm_select_seq(x), `!` = pm_select_negate(x), `-` = pm_select_minus(x), `c` = pm_select_c(x), `(` = pm_select_bracket(x), pm_select_pm_context(x) ) } pm_select_seq <- function(expr) { x <- pm_eval_expr(expr[[2]]) y <- pm_eval_expr(expr[[3]]) x:y } pm_select_negate <- function(expr) { x <- if (pm_is_negated_colon(expr)) { expr <- call(":", expr[[2]][[2]], expr[[2]][[3]][[2]]) pm_eval_expr(expr) } else { pm_eval_expr(expr[[2]]) } x * -1L } pm_is_negated_colon <- function(expr) { expr[[1]] == "!" && length(expr[[2]]) > 1L && expr[[2]][[1]] == ":" && expr[[2]][[3]][[1]] == "!" } pm_select_minus <- function(expr) { x <- pm_eval_expr(expr[[2]]) x * -1L } pm_select_c <- function(expr) { lst_expr <- as.list(expr) lst_expr[[1]] <- NULL unlist(lapply(lst_expr, pm_eval_expr)) } pm_select_bracket <- function(expr) { pm_eval_expr(expr[[2]]) } pm_select_pm_context <- function(expr) { eval(expr, envir = pm_select_env$.data) } pm_select_env <- new.env() pm_select_env$setup <- function(.data, calling_frame) { pm_select_env$.data <- .data pm_select_env$calling_frame <- calling_frame } pm_select_env$clean <- function() { rm(list = c(".data", "calling_frame"), envir = pm_select_env) } pm_select_env$get_colnames <- function() colnames(pm_select_env$.data) pm_select_env$get_nrow <- function() nrow(pm_select_env$.data) pm_select_env$get_ncol <- function() ncol(pm_select_env$.data) pm_select <- function(.data, ...) { col_pos <- pm_select_positions(.data, ..., .group_pos = TRUE) map_names <- names(col_pos) map_names_length <- nchar(map_names) if (any(map_names_length == 0L)) { no_new_names <- which(map_names_length == 0L) map_names[no_new_names] <- colnames(.data)[no_new_names] } res <- .data[, col_pos, drop = FALSE] if (!is.null(map_names) && all(col_pos > 0L)) colnames(res) <- map_names if (pm_has_groups(.data)) res <- pm_set_groups(res, pm_get_groups(.data)) res } pm_summarise <- function(.data, ...) { pm_check_is_dataframe(.data) if ("grouped_data" %in% class(.data)) { pm_summarise.grouped_data(.data, ...) } else { pm_summarise.default(.data, ...) } } pm_summarise.default <- function(.data, ...) { fns <- pm_dotdotdot(...) pm_context$setup(.data) on.exit(pm_context$clean(), add = TRUE) pm_groups_exist <- pm_has_groups(pm_context$.data) if (pm_groups_exist) { group <- unique(pm_context$.data[, pm_get_groups(pm_context$.data), drop = FALSE]) } res <- lapply( fns, function(x) { x_res <- do.call(with, list(pm_context$.data, x)) if (is.list(x_res)) I(x_res) else x_res } ) res <- as.data.frame(res) fn_names <- names(fns) colnames(res) <- if (is.null(fn_names)) fns else fn_names if (pm_groups_exist) res <- cbind(group, res, row.names = NULL) res } pm_summarise.grouped_data <- function(.data, ...) { pm_groups <- pm_get_groups(.data) res <- pm_apply_grouped_function("pm_summarise", .data, drop = TRUE, ...) res <- res[do.call(order, lapply(pm_groups, function(x) res[, x])), ] rownames(res) <- NULL res } pm_transmute <- function(.data, ...) { pm_check_is_dataframe(.data) if ("grouped_data" %in% class(.data)) { pm_transmute.grouped_data(.data, ...) } else { pm_transmute.default(.data, ...) } } pm_transmute.default <- function(.data, ...) { conditions <- pm_deparse_dots(...) mutated <- pm_mutate(.data, ...) mutated[, names(conditions), drop = FALSE] } pm_transmute.grouped_data <- function(.data, ...) { rows <- rownames(.data) res <- pm_apply_grouped_function("pm_transmute", .data, drop = TRUE, ...) res[rows, ] } pm_dotdotdot <- function(..., .impute_names = FALSE) { dots <- eval(substitute(alist(...))) if (isTRUE(.impute_names)) { pm_deparse_dots <- lapply(dots, deparse) names_dots <- names(dots) unnamed <- if (is.null(names_dots)) rep(TRUE, length(dots)) else nchar(names_dots) == 0L names(dots)[unnamed] <- pm_deparse_dots[unnamed] } dots } pm_deparse_dots <- function(...) { vapply(substitute(...()), deparse, NA_character_) } pm_deparse_var <- function(var, frame = if (is.null(pm_eval_env$env)) parent.frame() else pm_eval_env$env) { sub_var <- eval(substitute(substitute(var)), frame) if (is.symbol(sub_var)) var <- as.character(sub_var) var } pm_check_is_dataframe <- function(.data) { parent_fn <- all.names(sys.call(-1L), max.names = 1L) if (!is.data.frame(.data)) stop(parent_fn, " must be given a data.frame") invisible() } pm_is_wholenumber <- function(x) { x %% 1L == 0L } pm_seq2 <- function(from, to) { if (length(from) != 1) stop("`from` must be length one") if (length(to) != 1) stop("`to` must be length one") if (from > to) integer() else seq.int(from, to) } pm_is_function <- function(x, frame) { res <- tryCatch( is.function(x), warning = function(w) FALSE, error = function(e) FALSE ) if (isTRUE(res)) { return(res) } res <- tryCatch( is.function(eval(x)), warning = function(w) FALSE, error = function(e) FALSE ) if (isTRUE(res)) { return(res) } res <- tryCatch( is.function(eval(as.symbol(deparse(substitute(x))))), warning = function(w) FALSE, error = function(e) FALSE ) if (isTRUE(res)) { return(res) } FALSE } pm_collapse_to_sentence <- function(x) { len_x <- length(x) if (len_x == 0L) { stop("Length of `x` is 0") } else if (len_x == 1L) { as.character(x) } else if (len_x == 2L) { paste(x, collapse = " and ") } else { paste(paste(x[1:(len_x - 1)], collapse = ", "), x[len_x], sep = " and ") } } pm_where <- function(fn) { if (!pm_is_function(fn)) { stop(pm_deparse_var(fn), " is not a valid predicate function.") } preds <- unlist(lapply( pm_select_env$.data, function(x, fn) { do.call("fn", list(x)) }, fn )) if (!is.logical(preds)) stop("`pm_where()` must be used with functions that return `TRUE` or `FALSE`.") data_cols <- pm_select_env$get_colnames() cols <- data_cols[preds] which(data_cols %in% cols) } pm_cume_dist <- function(x) { rank(x, ties.method = "max", na.last = "keep") / sum(!is.na(x)) } pm_dense_rank <- function(x) { match(x, sort(unique(x))) } pm_min_rank <- function(x) { rank(x, ties.method = "min", na.last = "keep") } pm_ntile <- function(x = pm_row_number(), pm_n) { if (!missing(x)) x <- pm_row_number(x) len <- length(x) - sum(is.na(x)) pm_n <- as.integer(floor(pm_n)) if (len == 0L) { rep(NA_integer_, length(x)) } else { pm_n_larger <- as.integer(len %% pm_n) pm_n_smaller <- as.integer(pm_n - pm_n_larger) size <- len / pm_n larger_size <- as.integer(ceiling(size)) smaller_size <- as.integer(floor(size)) larger_threshold <- larger_size * pm_n_larger bins <- pm_if_else( x <= larger_threshold, (x + (larger_size - 1L)) / larger_size, (x + (-larger_threshold + smaller_size - 1L)) / smaller_size + pm_n_larger ) as.integer(floor(bins)) } } pm_percent_rank <- function(x) { (pm_min_rank(x) - 1) / (sum(!is.na(x)) - 1) } pm_row_number <- function(x) { if (missing(x)) seq_len(pm_n()) else rank(x, ties.method = "first", na.last = "keep") }