# ==================================================================== # # TITLE # # Antimicrobial Resistance (AMR) Data Analysis for R # # # # SOURCE # # https://github.com/msberends/AMR # # # # LICENCE # # (c) 2018-2021 Berends MS, Luz CF et al. # # Developed at the University of Groningen, the Netherlands, in # # collaboration with non-profit organisations Certe Medical # # Diagnostics & Advice, and University Medical Center Groningen. # # # # This R package is free software; you can freely use and distribute # # it for both personal and commercial purposes under the terms of the # # GNU General Public License version 2.0 (GNU GPL-2), as published by # # the Free Software Foundation. # # We created this package for both routine data analysis and academic # # research and it was publicly released in the hope that it will be # # useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. # # # # Visit our website for the full manual and a complete tutorial about # # how to conduct AMR data analysis: https://msberends.github.io/AMR/ # # ==================================================================== # context("count.R") test_that("counts work", { skip_on_cran() expect_equal(count_resistant(example_isolates$AMX), count_R(example_isolates$AMX)) expect_equal(count_susceptible(example_isolates$AMX), count_SI(example_isolates$AMX)) expect_equal(count_all(example_isolates$AMX), n_rsi(example_isolates$AMX)) # AMX resistance in `example_isolates` expect_equal(count_R(example_isolates$AMX), 804) expect_equal(count_I(example_isolates$AMX), 3) expect_equal(suppressWarnings(count_S(example_isolates$AMX)), 543) expect_equal(count_R(example_isolates$AMX) + count_I(example_isolates$AMX), suppressWarnings(count_IR(example_isolates$AMX))) expect_equal(suppressWarnings(count_S(example_isolates$AMX)) + count_I(example_isolates$AMX), count_SI(example_isolates$AMX)) # warning for speed loss reset_all_thrown_messages() expect_warning(count_resistant(as.character(example_isolates$AMC))) reset_all_thrown_messages() expect_warning(count_resistant(example_isolates$AMC, as.character(example_isolates$GEN))) # check for errors expect_error(count_resistant("test", minimum = "test")) expect_error(count_resistant("test", as_percent = "test")) expect_error(count_susceptible("test", minimum = "test")) expect_error(count_susceptible("test", as_percent = "test")) expect_error(count_df(c("A", "B", "C"))) expect_error(count_df(example_isolates[, "date"])) if (suppressWarnings(require("dplyr"))) { expect_equal(example_isolates %>% count_susceptible(AMC), 1433) expect_equal(example_isolates %>% count_susceptible(AMC, GEN, only_all_tested = TRUE), 1687) expect_equal(example_isolates %>% count_susceptible(AMC, GEN, only_all_tested = FALSE), 1764) expect_equal(example_isolates %>% count_all(AMC, GEN, only_all_tested = TRUE), 1798) expect_equal(example_isolates %>% count_all(AMC, GEN, only_all_tested = FALSE), 1936) expect_identical(example_isolates %>% count_all(AMC, GEN, only_all_tested = TRUE), example_isolates %>% count_susceptible(AMC, GEN, only_all_tested = TRUE) + example_isolates %>% count_resistant(AMC, GEN, only_all_tested = TRUE)) # count of cases expect_equal(example_isolates %>% group_by(hospital_id) %>% summarise(cipro = count_susceptible(CIP), genta = count_susceptible(GEN), combination = count_susceptible(CIP, GEN)) %>% pull(combination), c(253, 465, 192, 558)) # count_df expect_equal( example_isolates %>% select(AMX) %>% count_df() %>% pull(value), c(example_isolates$AMX %>% count_susceptible(), example_isolates$AMX %>% count_resistant()) ) expect_equal( example_isolates %>% select(AMX) %>% count_df(combine_IR = TRUE) %>% pull(value), c(suppressWarnings(example_isolates$AMX %>% count_S()), suppressWarnings(example_isolates$AMX %>% count_IR())) ) expect_equal( example_isolates %>% select(AMX) %>% count_df(combine_SI = FALSE) %>% pull(value), c(suppressWarnings(example_isolates$AMX %>% count_S()), example_isolates$AMX %>% count_I(), example_isolates$AMX %>% count_R()) ) # grouping in rsi_calc_df() (= backbone of rsi_df()) expect_true("hospital_id" %in% (example_isolates %>% group_by(hospital_id) %>% select(hospital_id, AMX, CIP, gender) %>% rsi_df() %>% colnames())) } })