# ==================================================================== # # TITLE # # AMR: An R Package for Working with Antimicrobial Resistance Data # # # # SOURCE # # https://github.com/msberends/AMR # # # # CITE AS # # Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C # # (2022). AMR: An R Package for Working with Antimicrobial Resistance # # Data. Journal of Statistical Software, 104(3), 1-31. # # doi:10.18637/jss.v104.i03 # # # # Developed at the University of Groningen, the Netherlands, in # # collaboration with non-profit organisations Certe Medical # # Diagnostics & Advice, and University Medical Center Groningen. # # # # This R package is free software; you can freely use and distribute # # it for both personal and commercial purposes under the terms of the # # GNU General Public License version 2.0 (GNU GPL-2), as published by # # the Free Software Foundation. # # We created this package for both routine data analysis and academic # # research and it was publicly released in the hope that it will be # # useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. # # # # Visit our website for the full manual and a complete tutorial about # # how to conduct AMR data analysis: https://msberends.github.io/AMR/ # # ==================================================================== # # IDs should always be unique expect_identical(nrow(microorganisms), length(unique(microorganisms$mo))) expect_identical(class(microorganisms$mo), c("mo", "character")) expect_identical(nrow(antibiotics), length(unique(antibiotics$ab))) expect_true(all(is.na(antibiotics$atc[duplicated(antibiotics$atc)]))) expect_identical(class(antibiotics$ab), c("ab", "character")) # check cross table reference expect_true(all(microorganisms.codes$mo %in% microorganisms$mo)) expect_true(all(example_isolates$mo %in% microorganisms$mo)) expect_true(all(rsi_translation$mo %in% microorganisms$mo)) expect_true(all(rsi_translation$ab %in% antibiotics$ab)) expect_true(all(intrinsic_resistant$mo %in% microorganisms$mo)) expect_true(all(intrinsic_resistant$ab %in% antibiotics$ab)) expect_false(any(is.na(microorganisms.codes$code))) expect_false(any(is.na(microorganisms.codes$mo))) expect_true(all(dosage$ab %in% antibiotics$ab)) expect_true(all(dosage$name %in% antibiotics$name)) # check valid disks/MICs expect_false(any(is.na(as.mic(rsi_translation[which(rsi_translation$method == "MIC"), "breakpoint_S", drop = TRUE])))) expect_false(any(is.na(as.mic(rsi_translation[which(rsi_translation$method == "MIC"), "breakpoint_R", drop = TRUE])))) expect_false(any(is.na(as.disk(rsi_translation[which(rsi_translation$method == "DISK"), "breakpoint_S", drop = TRUE])))) expect_false(any(is.na(as.disk(rsi_translation[which(rsi_translation$method == "DISK"), "breakpoint_R", drop = TRUE])))) # antibiotic names must always be coercible to their original AB code expect_identical(as.ab(antibiotics$name), antibiotics$ab) if (AMR:::pkg_is_available("tibble", also_load = FALSE)) { # there should be no diacritics (i.e. non ASCII) characters in the datasets (CRAN policy) datasets <- data(package = "AMR", envir = asNamespace("AMR"))$results[, "Item", drop = TRUE] for (i in seq_len(length(datasets))) { dataset <- get(datasets[i], envir = asNamespace("AMR")) expect_identical(AMR:::dataset_UTF8_to_ASCII(dataset), dataset, info = datasets[i]) } } df <- AMR:::MO_lookup expect_true(nrow(df[which(df$prevalence == 1), , drop = FALSE]) < nrow(df[which(df$prevalence == 2), , drop = FALSE])) expect_true(nrow(df[which(df$prevalence == 2), , drop = FALSE]) < nrow(df[which(df$prevalence == 3), , drop = FALSE])) expect_true(all(c( "mo", "fullname", "kingdom", "phylum", "class", "order", "family", "genus", "species", "subspecies", "rank", "ref", "lpsn", "gbif", "status", "source", "prevalence", "snomed", "kingdom_index", "fullname_lower", "g_species" ) %in% colnames(df))) expect_inherits(AMR:::MO_CONS, "mo") uncategorised <- subset( microorganisms, genus == "Staphylococcus" & !species %in% c("", "aureus") & !mo %in% c(AMR:::MO_CONS, AMR:::MO_COPS) ) expect_true(NROW(uncategorised) == 0, info = ifelse(NROW(uncategorised) == 0, "All staphylococcal species categorised as CoNS/CoPS.", paste0( "Staphylococcal species not categorised as CoNS/CoPS: S. ", uncategorised$species, " (", uncategorised$mo, ")" ) ) ) # THIS WILL CHECK NON-ASCII STRINGS IN ALL FILES: # check_non_ascii <- function() { # purrr::map_df( # .id = "file", # # list common text files # .x = fs::dir_ls( # recurse = TRUE, # type = "file", # # ignore images, compressed # regexp = "\\.(png|ico|rda|ai|tar.gz|zip|xlsx|csv|pdf|psd)$", # invert = TRUE # ), # .f = function(path) { # x <- readLines(path, warn = FALSE) # # from tools::showNonASCII() # asc <- iconv(x, "latin1", "ASCII") # ind <- is.na(asc) | asc != x # # make data frame # if (any(ind)) { # tibble::tibble( # row = which(ind), # line = iconv(x[ind], "latin1", "ASCII", sub = "byte") # ) # } else { # tibble::tibble() # } # } # ) # } # x <- check_non_ascii() %>% # filter(file %unlike% "^(data-raw|docs|git_)")