# ==================================================================== # # TITLE # # Antimicrobial Resistance (AMR) Analysis # # # # SOURCE # # https://gitlab.com/msberends/AMR # # # # LICENCE # # (c) 2019 Berends MS (m.s.berends@umcg.nl), Luz CF (c.f.luz@umcg.nl) # # # # This R package is free software; you can freely use and distribute # # it for both personal and commercial purposes under the terms of the # # GNU General Public License version 2.0 (GNU GPL-2), as published by # # the Free Software Foundation. # # # # This R package was created for academic research and was publicly # # released in the hope that it will be useful, but it comes WITHOUT # # ANY WARRANTY OR LIABILITY. # # Visit our website for more info: https://msberends.gitlab.io/AMR. # # ==================================================================== # #' Class 'rsi' #' #' Interpret MIC values and disk diffusion diameters according to EUCAST or CLSI, or clean up existing RSI values. This transforms the input to a new class [`rsi`], which is an ordered factor with levels `S < I < R`. Invalid antimicrobial interpretations will be translated as `NA` with a warning. #' @rdname as.rsi #' @param x vector of values (for class [`mic`]: an MIC value in mg/L, for class [`disk`]: a disk diffusion radius in millimeters) #' @param mo a microorganism code, generated with [as.mo()] #' @param ab an antimicrobial code, generated with [as.ab()] #' @inheritParams first_isolate #' @param guideline defaults to the latest included EUCAST guideline, run `unique(AMR::rsi_translation$guideline)` for all options #' @param threshold maximum fraction of invalid antimicrobial interpretations of `x`, please see *Examples* #' @param ... parameters passed on to methods #' @details Run `unique(AMR::rsi_translation$guideline)` for a list of all supported guidelines. #' #' After using [as.rsi()], you can use [eucast_rules()] to (1) apply inferred susceptibility and resistance based on results of other antimicrobials and (2) apply intrinsic resistance based on taxonomic properties of a microorganism. #' #' The function [is.rsi.eligible()] returns `TRUE` when a columns contains at most 5% invalid antimicrobial interpretations (not S and/or I and/or R), and `FALSE` otherwise. The threshold of 5% can be set with the `threshold` parameter. #' @section Interpretation of S, I and R: #' In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided to change the definitions of susceptibility testing categories S, I and R as shown below (). Results of several consultations on the new definitions are available on the EUCAST website under "Consultations". #' #' - **S** - Susceptible, standard dosing regimen: A microorganism is categorised as "Susceptible, standard dosing regimen", when there is a high likelihood of therapeutic success using a standard dosing regimen of the agent. #' - **I** - Susceptible, increased exposure: A microorganism is categorised as "Susceptible, Increased exposure" when there is a high likelihood of therapeutic success because exposure to the agent is increased by adjusting the dosing regimen or by its concentration at the site of infection. #' - **R** - Resistant: A microorganism is categorised as "Resistant" when there is a high likelihood of therapeutic failure even when there is increased exposure. #' #' Exposure is a function of how the mode of administration, dose, dosing interval, infusion time, as well as distribution and excretion of the antimicrobial agent will influence the infecting organism at the site of infection. #' #' This AMR package honours this new insight. Use [susceptibility()] (equal to [proportion_SI()]) to determine antimicrobial susceptibility and [count_susceptible()] (equal to [count_SI()]) to count susceptible isolates. #' @return Ordered factor with new class [`rsi`] #' @aliases rsi #' @export #' @importFrom dplyr %>% desc arrange filter #' @seealso [as.mic()] #' @inheritSection AMR Read more on our website! #' @examples #' rsi_data <- as.rsi(c(rep("S", 474), rep("I", 36), rep("R", 370))) #' rsi_data <- as.rsi(c(rep("S", 474), rep("I", 36), rep("R", 370), "A", "B", "C")) #' is.rsi(rsi_data) #' #' # this can also coerce combined MIC/RSI values: #' as.rsi("<= 0.002; S") # will return S #' #' # interpret MIC values #' as.rsi(x = as.mic(2), #' mo = as.mo("S. pneumoniae"), #' ab = "AMX", #' guideline = "EUCAST") #' as.rsi(x = as.mic(4), #' mo = as.mo("S. pneumoniae"), #' ab = "AMX", #' guideline = "EUCAST") #' #' plot(rsi_data) # for percentages #' barplot(rsi_data) # for frequencies #' freq(rsi_data) # frequency table with informative header #' #' # using dplyr's mutate #' library(dplyr) #' example_isolates %>% #' mutate_at(vars(PEN:RIF), as.rsi) #' #' #' # fastest way to transform all columns with already valid AB results to class `rsi`: #' example_isolates %>% #' mutate_if(is.rsi.eligible, #' as.rsi) #' #' # default threshold of `is.rsi.eligible` is 5%. #' is.rsi.eligible(WHONET$`First name`) # fails, >80% is invalid #' is.rsi.eligible(WHONET$`First name`, threshold = 0.99) # succeeds as.rsi <- function(x, ...) { UseMethod("as.rsi") } #' @export as.rsi.default <- function(x, ...) { if (is.rsi(x)) { x } else if (identical(levels(x), c("S", "I", "R"))) { structure(x, class = c("rsi", "ordered", "factor")) } else if (identical(class(x), "integer") & all(x %in% c(1:3, NA))) { x[x == 1] <- "S" x[x == 2] <- "I" x[x == 3] <- "R" structure(.Data = factor(x, levels = c("S", "I", "R"), ordered = TRUE), class = c("rsi", "ordered", "factor")) } else { x <- x %>% unlist() x.bak <- x na_before <- x[is.na(x) | x == ""] %>% length() # remove all spaces x <- gsub(" +", "", x) # remove all MIC-like values: numbers, operators and periods x <- gsub("[0-9.,;:<=>]+", "", x) # remove everything between brackets, and 'high' and 'low' x <- gsub("([(].*[)])", "", x) x <- gsub("(high|low)", "", x, ignore.case = TRUE) # disallow more than 3 characters x[nchar(x) > 3] <- NA # set to capitals x <- toupper(x) # remove all invalid characters x <- gsub("[^RSI]+", "", x) # in cases of "S;S" keep S, but in case of "S;I" make it NA x <- gsub("^S+$", "S", x) x <- gsub("^I+$", "I", x) x <- gsub("^R+$", "R", x) x[!x %in% c("S", "I", "R")] <- NA na_after <- x[is.na(x) | x == ""] %>% length() if (!isFALSE(list(...)$warn)) { # so as.rsi(..., warn = FALSE) will never throw a warning if (na_before != na_after) { list_missing <- x.bak[is.na(x) & !is.na(x.bak) & x.bak != ""] %>% unique() %>% sort() list_missing <- paste0('"', list_missing, '"', collapse = ", ") warning(na_after - na_before, " results truncated (", round(((na_after - na_before) / length(x)) * 100), "%) that were invalid antimicrobial interpretations: ", list_missing, call. = FALSE) } } structure(.Data = factor(x, levels = c("S", "I", "R"), ordered = TRUE), class = c("rsi", "ordered", "factor")) } } input_resembles_mic <- function(x) { mic <- x %>% gsub("[^0-9.,]+", "", .) %>% unique() mic_valid <- suppressWarnings(as.mic(mic)) result <- sum(!is.na(mic_valid)) / length(mic) if (is.na(result)) { 0 } else { result } } #' @rdname as.rsi #' @importFrom dplyr case_when #' @export as.rsi.mic <- function(x, mo, ab, guideline = "EUCAST", ...) { exec_as.rsi(method = "mic", x = x, mo = mo, ab = ab, guideline = guideline) } #' @rdname as.rsi #' @export as.rsi.disk <- function(x, mo, ab, guideline = "EUCAST", ...) { exec_as.rsi(method = "disk", x = x, mo = mo, ab = ab, guideline = guideline) } get_guideline <- function(guideline) { guideline_param <- toupper(guideline) if (guideline_param %in% c("CLSI", "EUCAST")) { guideline_param <- AMR::rsi_translation %>% filter(guideline %like% guideline_param) %>% pull(guideline) %>% sort() %>% rev() %>% .[1] } if (!guideline_param %in% AMR::rsi_translation$guideline) { stop(paste0("invalid guideline: '", guideline, "'.\nValid guidelines are: ", paste0("'", rev(sort(unique(AMR::rsi_translation$guideline))), "'", collapse = ", ")), call. = FALSE) } guideline_param } exec_as.rsi <- function(method, x, mo, ab, guideline) { if (method == "mic") { x <- as.double(as.mic(x)) # when as.rsi.mic is called directly method_param <- "MIC" } else if (method == "disk") { x <- as.double(as.disk(x)) # when as.rsi.disk is called directly method_param <- "DISK" } mo <- as.mo(mo) ab <- as.ab(ab) mo_genus <- as.mo(mo_genus(mo)) mo_family <- as.mo(mo_family(mo)) mo_order <- as.mo(mo_order(mo)) mo_becker <- as.mo(mo, Becker = TRUE) mo_lancefield <- as.mo(mo, Lancefield = TRUE) guideline_coerced <- get_guideline(guideline) if (guideline_coerced != guideline) { message(blue(paste0("Note: Using guideline ", bold(guideline_coerced), " as input for `guideline`."))) } new_rsi <- rep(NA_character_, length(x)) trans <- AMR::rsi_translation %>% filter(guideline == guideline_coerced & method == method_param) %>% mutate(lookup = paste(mo, ab)) lookup_mo <- paste(mo, ab) lookup_genus <- paste(mo_genus, ab) lookup_family <- paste(mo_family, ab) lookup_order <- paste(mo_order, ab) lookup_becker <- paste(mo_becker, ab) lookup_lancefield <- paste(mo_lancefield, ab) for (i in seq_len(length(x))) { get_record <- trans %>% filter(lookup %in% c(lookup_mo[i], lookup_genus[i], lookup_family[i], lookup_order[i], lookup_becker[i], lookup_lancefield[i])) %>% # be as specific as possible (i.e. prefer species over genus): arrange(desc(nchar(mo))) %>% .[1L, ] if (NROW(get_record) > 0) { if (is.na(x[i])) { new_rsi[i] <- NA_character_ } else if (method == "mic") { new_rsi[i] <- case_when(isTRUE(x[i] <= get_record$breakpoint_S) ~ "S", isTRUE(x[i] >= get_record$breakpoint_R) ~ "R", !is.na(get_record$breakpoint_S) & !is.na(get_record$breakpoint_R) ~ "I", TRUE ~ NA_character_) } else if (method == "disk") { new_rsi[i] <- case_when(isTRUE(x[i] >= get_record$breakpoint_S) ~ "S", isTRUE(x[i] <= get_record$breakpoint_R) ~ "R", !is.na(get_record$breakpoint_S) & !is.na(get_record$breakpoint_R) ~ "I", TRUE ~ NA_character_) } } } structure(.Data = factor(new_rsi, levels = c("S", "I", "R"), ordered = TRUE), class = c("rsi", "ordered", "factor")) } #' @rdname as.rsi #' @importFrom crayon red blue bold #' @export as.rsi.data.frame <- function(x, col_mo = NULL, guideline = "EUCAST", ...) { x <- x ab_cols <- colnames(x)[sapply(x, function(y) is.mic(y) | is.disk(y))] if (length(ab_cols) == 0) { stop("No columns with MIC values or disk zones found in this data set. Use as.mic or as.disk to transform antimicrobial columns.", call. = FALSE) } # try to find columns based on type # -- mo if (is.null(col_mo)) { col_mo <- search_type_in_df(x = x, type = "mo") } if (is.null(col_mo)) { stop("`col_mo` must be set.", call. = FALSE) } guideline_coerced <- get_guideline(guideline) if (guideline_coerced != guideline) { message(blue(paste0("Note: Using guideline ", bold(guideline_coerced), " as input for `guideline`."))) } # transform all MICs ab_cols <- colnames(x)[sapply(x, is.mic)] if (length(ab_cols) > 0) { for (i in seq_len(length(ab_cols))) { ab_col_coerced <- suppressWarnings(as.ab(ab_cols[i])) if (is.na(ab_col_coerced)) { message(red(paste0("Unknown drug: `", bold(ab_cols[i]), "`. Rename this column to a drug name or code, and check the output with as.ab()."))) next } message(blue(paste0("Interpreting column `", bold(ab_cols[i]), "` (", ifelse(ab_col_coerced != ab_cols[i], paste0(ab_col_coerced, ", "), ""), ab_name(ab_col_coerced, tolower = TRUE), ")...")), appendLF = FALSE) x[, ab_cols[i]] <- exec_as.rsi(method = "mic", x = x %>% pull(ab_cols[i]), mo = x %>% pull(col_mo), ab = ab_col_coerced, guideline = guideline_coerced) message(blue(" OK.")) } } # transform all disks ab_cols <- colnames(x)[sapply(x, is.disk)] if (length(ab_cols) > 0) { for (i in seq_len(length(ab_cols))) { ab_col_coerced <- suppressWarnings(as.ab(ab_cols[i])) if (is.na(ab_col_coerced)) { message(red(paste0("Unknown drug: `", bold(ab_cols[i]), "`. Rename this column to a drug name or code, and check the output with as.ab()."))) next } message(blue(paste0("Interpreting column `", bold(ab_cols[i]), "` (", ifelse(ab_col_coerced != ab_cols[i], paste0(ab_col_coerced, ", "), ""), ab_name(ab_col_coerced, tolower = TRUE), ")...")), appendLF = FALSE) x[, ab_cols[i]] <- exec_as.rsi(method = "disk", x = x %>% pull(ab_cols[i]), mo = x %>% pull(col_mo), ab = ab_col_coerced, guideline = guideline_coerced) message(blue(" OK.")) } } x } #' @rdname as.rsi #' @export is.rsi <- function(x) { identical(class(x), c("rsi", "ordered", "factor")) } #' @rdname as.rsi #' @export is.rsi.eligible <- function(x, threshold = 0.05) { if (NCOL(x) > 1) { stop("`x` must be a one-dimensional vector.") } if (any(c("logical", "numeric", "integer", "mo", "Date", "POSIXct", "rsi", "raw", "hms") %in% class(x))) { # no transformation needed FALSE } else { x <- x[!is.na(x) & !is.null(x) & !identical(x, "")] if (length(x) == 0) { return(FALSE) } checked <- suppressWarnings(as.rsi(x)) outcome <- sum(is.na(checked)) / length(x) outcome <= threshold } } #' @exportMethod print.rsi #' @export #' @importFrom dplyr %>% #' @noRd print.rsi <- function(x, ...) { cat("Class 'rsi'\n") print(as.character(x), quote = FALSE) } #' @exportMethod droplevels.rsi #' @export #' @noRd droplevels.rsi <- function(x, exclude = if (anyNA(levels(x))) NULL else NA, ...) { x <- droplevels.factor(x, exclude = exclude, ...) class(x) <- c("rsi", "ordered", "factor") x } #' @exportMethod summary.rsi #' @export #' @noRd summary.rsi <- function(object, ...) { x <- object c( "Class" = "rsi", "" = sum(is.na(x)), "Sum S" = sum(x == "S", na.rm = TRUE), "Sum IR" = sum(x %in% c("I", "R"), na.rm = TRUE), "-Sum R" = sum(x == "R", na.rm = TRUE), "-Sum I" = sum(x == "I", na.rm = TRUE) ) } #' @exportMethod plot.rsi #' @export #' @importFrom dplyr %>% group_by summarise filter mutate if_else n_distinct #' @importFrom graphics plot text #' @noRd plot.rsi <- function(x, lwd = 2, ylim = NULL, ylab = "Percentage", xlab = "Antimicrobial Interpretation", main = paste("Susceptibility Analysis of", deparse(substitute(x))), axes = FALSE, ...) { suppressWarnings( data <- data.frame(x = x, y = 1, stringsAsFactors = TRUE) %>% group_by(x) %>% summarise(n = sum(y)) %>% filter(!is.na(x)) %>% mutate(s = round((n / sum(n)) * 100, 1)) ) if (!"S" %in% data$x) { data <- rbind(data, data.frame(x = "S", n = 0, s = 0)) } if (!"I" %in% data$x) { data <- rbind(data, data.frame(x = "I", n = 0, s = 0)) } if (!"R" %in% data$x) { data <- rbind(data, data.frame(x = "R", n = 0, s = 0)) } data$x <- factor(data$x, levels = c("S", "I", "R"), ordered = TRUE) ymax <- if_else(max(data$s) > 95, 105, 100) plot(x = data$x, y = data$s, lwd = lwd, ylim = c(0, ymax), ylab = ylab, xlab = xlab, main = main, axes = axes, ...) # x axis axis(side = 1, at = 1:n_distinct(data$x), labels = levels(data$x), lwd = 0) # y axis, 0-100% axis(side = 2, at = seq(0, 100, 5)) text(x = data$x, y = data$s + 4, labels = paste0(data$s, "% (n = ", data$n, ")")) } #' @exportMethod barplot.rsi #' @export #' @importFrom dplyr %>% group_by summarise #' @importFrom graphics barplot axis par #' @noRd barplot.rsi <- function(height, col = c("green3", "orange2", "red3"), xlab = ifelse(beside, "Antimicrobial Interpretation", ""), main = paste("Susceptibility Analysis of", deparse(substitute(height))), ylab = "Frequency", beside = TRUE, axes = beside, ...) { if (axes == TRUE) { par(mar = c(5, 4, 4, 2) + 0.1) } else { par(mar = c(2, 4, 4, 2) + 0.1) } barplot(as.matrix(table(height)), col = col, xlab = xlab, main = main, ylab = ylab, beside = beside, axes = FALSE, ...) # y axis, 0-100% axis(side = 2, at = seq(0, max(table(height)) + max(table(height)) * 1.1, by = 25)) if (axes == TRUE && beside == TRUE) { axis(side = 1, labels = levels(height), at = c(1, 2, 3) + 0.5, lwd = 0) } } #' @importFrom pillar type_sum #' @export type_sum.rsi <- function(x) { "rsi" } #' @importFrom pillar pillar_shaft #' @importFrom crayon bgGreen bgYellow bgRed black white #' @export pillar_shaft.rsi <- function(x, ...) { out <- trimws(format(x)) out[is.na(x)] <- pillar::style_subtle(" NA") out[x == "S"] <- bgGreen(white(" S ")) out[x == "I"] <- bgYellow(black(" I ")) out[x == "R"] <- bgRed(white(" R ")) pillar::new_pillar_shaft_simple(out, align = "left", width = 3) }