Skip to contents

These functions determine which items in a vector can be considered (the start of) a new episode, based on the argument episode_days. This can be used to determine clinical episodes for any epidemiological analysis. The get_episode() function returns the index number of the episode per group, while the is_new_episode() function returns values TRUE/FALSE to indicate whether an item in a vector is the start of a new episode.

Usage

get_episode(x, episode_days, ...)

is_new_episode(x, episode_days, ...)

Arguments

x

vector of dates (class Date or POSIXt), will be sorted internally to determine episodes

episode_days

required episode length in days, can also be less than a day or Inf, see Details

...

ignored, only in place to allow future extensions

Value

  • get_episode(): a double vector

  • is_new_episode(): a logical vector

Details

Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least episode_days days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least episode_days days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.

The first_isolate() function is a wrapper around the is_new_episode() function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.

The dplyr package is not required for these functions to work, but these functions do support variable grouping and work conveniently inside dplyr verbs such as filter(), mutate() and summarise().

See also

Examples

# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 200), ]

get_episode(df$date, episode_days = 60) # indices
#>   [1] 53 62 32 61 13 24  5 35 42 38 15  9  6  4 24 17 13 61 29 35 46 18 27  5 29
#>  [26] 15 43 28 19 12 13 32 59  8 32  6 20  2  5 23 21 32 43 45 32 56 37 48 38 29
#>  [51] 13 18 53  7 48 52 24  7 36 52 60  6 32 29 31  5 21 12 58 15 44 31 25  8 41
#>  [76] 29  8 44 32 56 11 44  9 32 39 31 13 60 30 33 17 49 10 47  8 19 19 11  7 46
#> [101] 31 15 47  3 25 30 61 36  1 22 55 23 20 60 60 44 63 36 46 58 58 26 51 12 41
#> [126] 13 11  7  2 63 12 23 18 45 26 51 46 54 32 21 11  1 59  9 53 59 62 59 47  8
#> [151] 54 10 15 56 39 36 50 38 40 57 42 22 31 34 14 49 34  4 26 29 63 59 62 31  8
#> [176]  4 63 33 28 40 40  3 32  4 58 13 11 16  5 58 29  1 46 38 61 59  7 51 34 27
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#>   [1] FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE
#>  [13] FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE
#>  [25] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#>  [37] FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE
#>  [49] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE
#>  [61] FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE
#>  [73] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
#>  [85]  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE
#>  [97]  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE
#> [109]  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE
#> [121] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE
#> [133]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [145]  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE
#> [157]  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE
#> [169]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [181]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE
#> [193] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE

# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 2 × 46
#>   date       patient   age gender ward  mo           PEN   OXA   FLC   AMX  
#>   <date>     <chr>   <dbl> <chr>  <chr> <mo>         <rsi> <rsi> <rsi> <rsi>
#> 1 2002-06-22 FD8039     75 F      ICU   B_ESCHR_COLI R     NA    NA    NA   
#> 2 2002-06-18 012595     30 M      ICU   B_CRYNB      I     NA    NA    NA   
#> # … with 36 more variables: AMC <rsi>, AMP <rsi>, TZP <rsi>, CZO <rsi>,
#> #   FEP <rsi>, CXM <rsi>, FOX <rsi>, CTX <rsi>, CAZ <rsi>, CRO <rsi>,
#> #   GEN <rsi>, TOB <rsi>, AMK <rsi>, KAN <rsi>, TMP <rsi>, SXT <rsi>,
#> #   NIT <rsi>, FOS <rsi>, LNZ <rsi>, CIP <rsi>, MFX <rsi>, VAN <rsi>,
#> #   TEC <rsi>, TCY <rsi>, TGC <rsi>, DOX <rsi>, ERY <rsi>, CLI <rsi>,
#> #   AZM <rsi>, IPM <rsi>, MEM <rsi>, MTR <rsi>, CHL <rsi>, COL <rsi>,
#> #   MUP <rsi>, RIF <rsi>

# the functions also work for less than a day, e.g. to include one per hour:
get_episode(c(
  Sys.time(),
  Sys.time() + 60 * 60
),
episode_days = 1 / 24
)
#> [1] 1 2

# \donttest{
if (require("dplyr")) {
  # is_new_episode() can also be used in dplyr verbs to determine patient
  # episodes based on any (combination of) grouping variables:
  df %>%
    mutate(condition = sample(
      x = c("A", "B", "C"),
      size = 200,
      replace = TRUE
    )) %>%
    group_by(condition) %>%
    mutate(new_episode = is_new_episode(date, 365)) %>%
    select(patient, date, condition, new_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   condition [3]
#>    patient date       condition new_episode
#>    <chr>   <date>     <chr>     <lgl>      
#>  1 F76601  2015-09-20 A         FALSE      
#>  2 D20588  2017-08-17 A         FALSE      
#>  3 48BB05  2010-03-15 B         TRUE       
#>  4 871020  2017-07-20 B         FALSE      
#>  5 554965  2005-08-29 B         FALSE      
#>  6 451990  2008-03-22 B         FALSE      
#>  7 E44854  2003-03-22 C         FALSE      
#>  8 D91230  2010-12-06 A         TRUE       
#>  9 743093  2012-09-14 C         FALSE      
#> 10 BC9909  2011-07-08 A         FALSE      
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward, patient) %>%
    transmute(date,
      patient,
      new_index = get_episode(date, 60),
      new_logical = is_new_episode(date, 60)
    )
}
#> # A tibble: 200 × 5
#> # Groups:   ward, patient [182]
#>    ward       date       patient new_index new_logical
#>    <chr>      <date>     <chr>       <dbl> <lgl>      
#>  1 ICU        2015-09-20 F76601          1 TRUE       
#>  2 ICU        2017-08-17 D20588          1 TRUE       
#>  3 Clinical   2010-03-15 48BB05          1 TRUE       
#>  4 Clinical   2017-07-20 871020          1 TRUE       
#>  5 Clinical   2005-08-29 554965          1 TRUE       
#>  6 Clinical   2008-03-22 451990          1 TRUE       
#>  7 ICU        2003-03-22 E44854          1 TRUE       
#>  8 Clinical   2010-12-06 D91230          1 TRUE       
#>  9 Outpatient 2012-09-14 743093          1 TRUE       
#> 10 Clinical   2011-07-08 BC9909          1 TRUE       
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward) %>%
    summarise(
      n_patients = n_distinct(patient),
      n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
      n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
      n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
    )
}
#> # A tibble: 3 × 5
#>   ward       n_patients n_episodes_365 n_episodes_60 n_episodes_30
#>   <chr>           <int>          <int>         <int>         <int>
#> 1 Clinical          112             15            51            70
#> 2 ICU                61             13            37            43
#> 3 Outpatient          9              6             9             9
if (require("dplyr")) {

  # grouping on patients and microorganisms leads to the same
  # results as first_isolate() when using 'episode-based':
  x <- df %>%
    filter_first_isolate(
      include_unknown = TRUE,
      method = "episode-based"
    )

  y <- df %>%
    group_by(patient, mo) %>%
    filter(is_new_episode(date, 365)) %>%
    ungroup()

  identical(x, y)
}
#> Including isolates from ICU.
#> [1] FALSE
if (require("dplyr")) {

  # but is_new_episode() has a lot more flexibility than first_isolate(),
  # since you can now group on anything that seems relevant:
  df %>%
    group_by(patient, mo, ward) %>%
    mutate(flag_episode = is_new_episode(date, 365)) %>%
    select(group_vars(.), flag_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   patient, mo, ward [188]
#>    patient mo            ward       flag_episode
#>    <chr>   <mo>          <chr>      <lgl>       
#>  1 F76601  B_ESCHR_COLI  ICU        TRUE        
#>  2 D20588  B_STPHY_HMNS  ICU        TRUE        
#>  3 48BB05  B_STPHY_CONS  Clinical   TRUE        
#>  4 871020  B_STPHY_EPDR  Clinical   TRUE        
#>  5 554965  B_STPHY_AURS  Clinical   TRUE        
#>  6 451990  B_ESCHR_COLI  Clinical   TRUE        
#>  7 E44854  B_STRPT_PNMN  ICU        TRUE        
#>  8 D91230  B_STPHY_EPDR  Clinical   TRUE        
#>  9 743093  B_ENTRBC_CLOC Outpatient TRUE        
#> 10 BC9909  B_ENTRBC_CLOC Clinical   TRUE        
#> # … with 190 more rows
# }