# ==================================================================== # # TITLE # # Antimicrobial Resistance (AMR) Data Analysis for R # # # # SOURCE # # https://github.com/msberends/AMR # # # # LICENCE # # (c) 2018-2021 Berends MS, Luz CF et al. # # Developed at the University of Groningen, the Netherlands, in # # collaboration with non-profit organisations Certe Medical # # Diagnostics & Advice, and University Medical Center Groningen. # # # # This R package is free software; you can freely use and distribute # # it for both personal and commercial purposes under the terms of the # # GNU General Public License version 2.0 (GNU GPL-2), as published by # # the Free Software Foundation. # # We created this package for both routine data analysis and academic # # research and it was publicly released in the hope that it will be # # useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. # # # # Visit our website for the full manual and a complete tutorial about # # how to conduct AMR data analysis: https://msberends.github.io/AMR/ # # ==================================================================== # #' AMR Plots with `ggplot2` #' #' Use these functions to create bar plots for AMR data analysis. All functions rely on [ggplot2][ggplot2::ggplot()] functions. #' @inheritSection lifecycle Stable Lifecycle #' @param data a [data.frame] with column(s) of class [`rsi`] (see [as.rsi()]) #' @param position position adjustment of bars, either `"fill"`, `"stack"` or `"dodge"` #' @param x variable to show on x axis, either `"antibiotic"` (default) or `"interpretation"` or a grouping variable #' @param fill variable to categorise using the plots legend, either `"antibiotic"` (default) or `"interpretation"` or a grouping variable #' @param breaks a [numeric] vector of positions #' @param limits a [numeric] vector of length two providing limits of the scale, use `NA` to refer to the existing minimum or maximum #' @param facet variable to split plots by, either `"interpretation"` (default) or `"antibiotic"` or a grouping variable #' @inheritParams proportion #' @param nrow (when using `facet`) number of rows #' @param colours a named vactor with colour to be used for filling. The default colours are colour-blind friendly. #' @param aesthetics aesthetics to apply the colours to, defaults to "fill" but can also be (a combination of) "alpha", "colour", "fill", "linetype", "shape" or "size" #' @param datalabels show datalabels using [labels_rsi_count()] #' @param datalabels.size size of the datalabels #' @param datalabels.colour colour of the datalabels #' @param title text to show as title of the plot #' @param subtitle text to show as subtitle of the plot #' @param caption text to show as caption of the plot #' @param x.title text to show as x axis description #' @param y.title text to show as y axis description #' @param ... other arguments passed on to [geom_rsi()] or, in case of [scale_rsi_colours()], named values to set colours. The default colours are colour-blind friendly, while maintaining the convention that e.g. 'susceptible' should be green and 'resistant' should be red. See *Examples*. #' @details At default, the names of antibiotics will be shown on the plots using [ab_name()]. This can be set with the `translate_ab` argument. See [count_df()]. #' #' ## The Functions #' [geom_rsi()] will take any variable from the data that has an [`rsi`] class (created with [as.rsi()]) using [rsi_df()] and will plot bars with the percentage R, I and S. The default behaviour is to have the bars stacked and to have the different antibiotics on the x axis. #' #' [facet_rsi()] creates 2d plots (at default based on S/I/R) using [ggplot2::facet_wrap()]. #' #' [scale_y_percent()] transforms the y axis to a 0 to 100% range using [ggplot2::scale_y_continuous()]. #' #' [scale_rsi_colours()] sets colours to the bars (green for S, yellow for I, and red for R). with multilingual support. The default colours are colour-blind friendly, while maintaining the convention that e.g. 'susceptible' should be green and 'resistant' should be red. #' #' [theme_rsi()] is a [ggplot2 theme][[ggplot2::theme()] with minimal distraction. #' #' [labels_rsi_count()] print datalabels on the bars with percentage and amount of isolates using [ggplot2::geom_text()]. #' #' [ggplot_rsi()] is a wrapper around all above functions that uses data as first input. This makes it possible to use this function after a pipe (`%>%`). See *Examples*. #' @rdname ggplot_rsi #' @export #' @inheritSection AMR Read more on Our Website! #' @examples #' \donttest{ #' if (require("ggplot2") & require("dplyr")) { #' #' # get antimicrobial results for drugs against a UTI: #' ggplot(example_isolates %>% select(AMX, NIT, FOS, TMP, CIP)) + #' geom_rsi() #' #' # prettify the plot using some additional functions: #' df <- example_isolates %>% select(AMX, NIT, FOS, TMP, CIP) #' ggplot(df) + #' geom_rsi() + #' scale_y_percent() + #' scale_rsi_colours() + #' labels_rsi_count() + #' theme_rsi() #' #' # or better yet, simplify this using the wrapper function - a single command: #' example_isolates %>% #' select(AMX, NIT, FOS, TMP, CIP) %>% #' ggplot_rsi() #' #' # get only proportions and no counts: #' example_isolates %>% #' select(AMX, NIT, FOS, TMP, CIP) %>% #' ggplot_rsi(datalabels = FALSE) #' #' # add other ggplot2 arguments as you like: #' example_isolates %>% #' select(AMX, NIT, FOS, TMP, CIP) %>% #' ggplot_rsi(width = 0.5, #' colour = "black", #' size = 1, #' linetype = 2, #' alpha = 0.25) #' #' # you can alter the colours with colour names: #' example_isolates %>% #' select(AMX) %>% #' ggplot_rsi(colours = c(SI = "yellow")) #' #' # but you can also use the built-in colour-blind friendly colours for #' # your plots, where "S" is green, "I" is yellow and "R" is red: #' data.frame(x = c("Value1", "Value2", "Value3"), #' y = c(1, 2, 3), #' z = c("Value4", "Value5", "Value6")) %>% #' ggplot() + #' geom_col(aes(x = x, y = y, fill = z)) + #' scale_rsi_colours(Value4 = "S", Value5 = "I", Value6 = "R") #' #' # resistance of ciprofloxacine per age group #' example_isolates %>% #' mutate(first_isolate = first_isolate()) %>% #' filter(first_isolate == TRUE, #' mo == as.mo("E. coli")) %>% #' # age_groups() is also a function in this AMR package: #' group_by(age_group = age_groups(age)) %>% #' select(age_group, #' CIP) %>% #' ggplot_rsi(x = "age_group") #' #' # a shorter version which also adjusts data label colours: #' example_isolates %>% #' select(AMX, NIT, FOS, TMP, CIP) %>% #' ggplot_rsi(colours = FALSE) #' #' #' # it also supports groups (don't forget to use the group var on `x` or `facet`): #' example_isolates %>% #' select(hospital_id, AMX, NIT, FOS, TMP, CIP) %>% #' group_by(hospital_id) %>% #' ggplot_rsi(x = "hospital_id", #' facet = "antibiotic", #' nrow = 1, #' title = "AMR of Anti-UTI Drugs Per Hospital", #' x.title = "Hospital", #' datalabels = FALSE) #' } #' } ggplot_rsi <- function(data, position = NULL, x = "antibiotic", fill = "interpretation", # params = list(), facet = NULL, breaks = seq(0, 1, 0.1), limits = NULL, translate_ab = "name", combine_SI = TRUE, combine_IR = FALSE, minimum = 30, language = get_locale(), nrow = NULL, colours = c(S = "#3CAEA3", SI = "#3CAEA3", I = "#F6D55C", IR = "#ED553B", R = "#ED553B"), datalabels = TRUE, datalabels.size = 2.5, datalabels.colour = "grey15", title = NULL, subtitle = NULL, caption = NULL, x.title = "Antimicrobial", y.title = "Proportion", ...) { stop_ifnot_installed("ggplot2") meet_criteria(data, allow_class = "data.frame", contains_column_class = "rsi") meet_criteria(position, allow_class = "character", has_length = 1, is_in = c("fill", "stack", "dodge"), allow_NULL = TRUE) meet_criteria(x, allow_class = "character", has_length = 1) meet_criteria(fill, allow_class = "character", has_length = 1) meet_criteria(facet, allow_class = "character", has_length = 1, allow_NULL = TRUE) meet_criteria(breaks, allow_class = c("numeric", "integer")) meet_criteria(limits, allow_class = c("numeric", "integer"), has_length = 2, allow_NULL = TRUE, allow_NA = TRUE) meet_criteria(translate_ab, allow_class = c("character", "logical"), has_length = 1, allow_NA = TRUE) meet_criteria(combine_SI, allow_class = "logical", has_length = 1) meet_criteria(combine_IR, allow_class = "logical", has_length = 1) meet_criteria(minimum, allow_class = c("numeric", "integer"), has_length = 1, is_finite = TRUE) meet_criteria(language, has_length = 1, is_in = c(LANGUAGES_SUPPORTED, ""), allow_NULL = TRUE, allow_NA = TRUE) meet_criteria(nrow, allow_class = c("numeric", "integer"), has_length = 1, allow_NULL = TRUE, is_positive = TRUE, is_finite = TRUE) meet_criteria(colours, allow_class = c("character", "logical")) meet_criteria(datalabels, allow_class = "logical", has_length = 1) meet_criteria(datalabels.size, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE) meet_criteria(datalabels.colour, allow_class = "character", has_length = 1) meet_criteria(title, allow_class = "character", has_length = 1, allow_NULL = TRUE) meet_criteria(subtitle, allow_class = "character", has_length = 1, allow_NULL = TRUE) meet_criteria(caption, allow_class = "character", has_length = 1, allow_NULL = TRUE) meet_criteria(x.title, allow_class = "character", has_length = 1, allow_NULL = TRUE) meet_criteria(y.title, allow_class = "character", has_length = 1, allow_NULL = TRUE) # we work with aes_string later on x_deparse <- deparse(substitute(x)) if (x_deparse != "x") { x <- x_deparse } if (x %like% '".*"') { x <- substr(x, 2, nchar(x) - 1) } facet_deparse <- deparse(substitute(facet)) if (facet_deparse != "facet") { facet <- facet_deparse } if (facet %like% '".*"') { facet <- substr(facet, 2, nchar(facet) - 1) } if (facet %in% c("NULL", "")) { facet <- NULL } if (is.null(position)) { position <- "fill" } p <- ggplot2::ggplot(data = data) + geom_rsi(position = position, x = x, fill = fill, translate_ab = translate_ab, minimum = minimum, language = language, combine_SI = combine_SI, combine_IR = combine_IR, ...) + theme_rsi() if (fill == "interpretation") { p <- p + scale_rsi_colours(colours = colours) } if (identical(position, "fill")) { # proportions, so use y scale with percentage p <- p + scale_y_percent(breaks = breaks, limits = limits) } if (datalabels == TRUE) { p <- p + labels_rsi_count(position = position, x = x, translate_ab = translate_ab, minimum = minimum, language = language, combine_SI = combine_SI, combine_IR = combine_IR, datalabels.size = datalabels.size, datalabels.colour = datalabels.colour) } if (!is.null(facet)) { p <- p + facet_rsi(facet = facet, nrow = nrow) } p <- p + ggplot2::labs(title = title, subtitle = subtitle, caption = caption, x = x.title, y = y.title) p } #' @rdname ggplot_rsi #' @export geom_rsi <- function(position = NULL, x = c("antibiotic", "interpretation"), fill = "interpretation", translate_ab = "name", minimum = 30, language = get_locale(), combine_SI = TRUE, combine_IR = FALSE, ...) { x <- x[1] stop_ifnot_installed("ggplot2") stop_if(is.data.frame(position), "`position` is invalid. Did you accidentally use '%>%' instead of '+'?") meet_criteria(position, allow_class = "character", has_length = 1, is_in = c("fill", "stack", "dodge"), allow_NULL = TRUE) meet_criteria(x, allow_class = "character", has_length = 1) meet_criteria(fill, allow_class = "character", has_length = 1) meet_criteria(translate_ab, allow_class = c("character", "logical"), has_length = 1, allow_NA = TRUE) meet_criteria(minimum, allow_class = c("numeric", "integer"), has_length = 1, is_finite = TRUE) meet_criteria(language, has_length = 1, is_in = c(LANGUAGES_SUPPORTED, ""), allow_NULL = TRUE, allow_NA = TRUE) meet_criteria(combine_SI, allow_class = "logical", has_length = 1) meet_criteria(combine_IR, allow_class = "logical", has_length = 1) y <- "value" if (missing(position) | is.null(position)) { position <- "fill" } if (identical(position, "fill")) { position <- ggplot2::position_fill(vjust = 0.5, reverse = TRUE) } # we work with aes_string later on x_deparse <- deparse(substitute(x)) if (x_deparse != "x") { x <- x_deparse } if (x %like% '".*"') { x <- substr(x, 2, nchar(x) - 1) } if (tolower(x) %in% tolower(c("ab", "abx", "antibiotics"))) { x <- "antibiotic" } else if (tolower(x) %in% tolower(c("SIR", "RSI", "interpretations", "result"))) { x <- "interpretation" } ggplot2::geom_col( data = function(x) { rsi_df(data = x, translate_ab = translate_ab, language = language, minimum = minimum, combine_SI = combine_SI, combine_IR = combine_IR) }, mapping = ggplot2::aes_string(x = x, y = y, fill = fill), position = position, ... ) } #' @rdname ggplot_rsi #' @export facet_rsi <- function(facet = c("interpretation", "antibiotic"), nrow = NULL) { facet <- facet[1] stop_ifnot_installed("ggplot2") meet_criteria(facet, allow_class = "character", has_length = 1) meet_criteria(nrow, allow_class = c("numeric", "integer"), has_length = 1, allow_NULL = TRUE, is_positive = TRUE, is_finite = TRUE) # we work with aes_string later on facet_deparse <- deparse(substitute(facet)) if (facet_deparse != "facet") { facet <- facet_deparse } if (facet %like% '".*"') { facet <- substr(facet, 2, nchar(facet) - 1) } if (tolower(facet) %in% tolower(c("SIR", "RSI", "interpretations", "result"))) { facet <- "interpretation" } else if (tolower(facet) %in% tolower(c("ab", "abx", "antibiotics"))) { facet <- "antibiotic" } ggplot2::facet_wrap(facets = facet, scales = "free_x", nrow = nrow) } #' @rdname ggplot_rsi #' @export scale_y_percent <- function(breaks = seq(0, 1, 0.1), limits = NULL) { stop_ifnot_installed("ggplot2") meet_criteria(breaks, allow_class = c("numeric", "integer")) meet_criteria(limits, allow_class = c("numeric", "integer"), has_length = 2, allow_NULL = TRUE, allow_NA = TRUE) if (all(breaks[breaks != 0] > 1)) { breaks <- breaks / 100 } ggplot2::scale_y_continuous(breaks = breaks, labels = percentage(breaks), limits = limits) } #' @rdname ggplot_rsi #' @export scale_rsi_colours <- function(..., aesthetics = "fill") { stop_ifnot_installed("ggplot2") meet_criteria(aesthetics, allow_class = "character", is_in = c("alpha", "colour", "color", "fill", "linetype", "shape", "size")) # behaviour until AMR pkg v1.5.0 and also when coming from ggplot_rsi() if ("colours" %in% names(list(...))) { original_cols <- c(S = "#3CAEA3", SI = "#3CAEA3", I = "#F6D55C", IR = "#ED553B", R = "#ED553B") colours <- replace(original_cols, names(list(...)$colours), list(...)$colours) return(ggplot2::scale_fill_manual(values = colours)) } if (identical(unlist(list(...)), FALSE)) { return(invisible()) } names_susceptible <- c("S", "SI", "IS", "S+I", "I+S", "susceptible", "Susceptible", unique(translations_file[which(translations_file$pattern == "Susceptible"), "replacement", drop = TRUE])) names_incr_exposure <- c("I", "intermediate", "increased exposure", "incr. exposure", "Increased exposure", "Incr. exposure", unique(translations_file[which(translations_file$pattern == "Intermediate"), "replacement", drop = TRUE]), unique(translations_file[which(translations_file$pattern == "Incr. exposure"), "replacement", drop = TRUE])) names_resistant <- c("R", "IR", "RI", "R+I", "I+R", "resistant", "Resistant", unique(translations_file[which(translations_file$pattern == "Resistant"), "replacement", drop = TRUE])) susceptible <- rep("#3CAEA3", length(names_susceptible)) names(susceptible) <- names_susceptible incr_exposure <- rep("#F6D55C", length(names_incr_exposure)) names(incr_exposure) <- names_incr_exposure resistant <- rep("#ED553B", length(names_resistant)) names(resistant) <- names_resistant original_cols = c(susceptible, incr_exposure, resistant) dots <- c(...) # replace S, I, R as colours: scale_rsi_colours(mydatavalue = "S") dots[dots == "S"] <- "#3CAEA3" dots[dots == "I"] <- "#F6D55C" dots[dots == "R"] <- "#ED553B" cols <- replace(original_cols, names(dots), dots) ggplot2::scale_discrete_manual(aesthetics = aesthetics, values = cols) } #' @rdname ggplot_rsi #' @export theme_rsi <- function() { stop_ifnot_installed("ggplot2") ggplot2::theme_minimal(base_size = 10) + ggplot2::theme(panel.grid.major.x = ggplot2::element_blank(), panel.grid.minor = ggplot2::element_blank(), panel.grid.major.y = ggplot2::element_line(colour = "grey75"), # center title and subtitle plot.title = ggplot2::element_text(hjust = 0.5), plot.subtitle = ggplot2::element_text(hjust = 0.5)) } #' @rdname ggplot_rsi #' @export labels_rsi_count <- function(position = NULL, x = "antibiotic", translate_ab = "name", minimum = 30, language = get_locale(), combine_SI = TRUE, combine_IR = FALSE, datalabels.size = 3, datalabels.colour = "grey15") { stop_ifnot_installed("ggplot2") meet_criteria(position, allow_class = "character", has_length = 1, is_in = c("fill", "stack", "dodge"), allow_NULL = TRUE) meet_criteria(x, allow_class = "character", has_length = 1) meet_criteria(translate_ab, allow_class = c("character", "logical"), has_length = 1, allow_NA = TRUE) meet_criteria(minimum, allow_class = c("numeric", "integer"), has_length = 1, is_finite = TRUE) meet_criteria(language, has_length = 1, is_in = c(LANGUAGES_SUPPORTED, ""), allow_NULL = TRUE, allow_NA = TRUE) meet_criteria(combine_SI, allow_class = "logical", has_length = 1) meet_criteria(combine_IR, allow_class = "logical", has_length = 1) meet_criteria(datalabels.size, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE) meet_criteria(datalabels.colour, allow_class = "character", has_length = 1) if (is.null(position)) { position <- "fill" } if (identical(position, "fill")) { position <- ggplot2::position_fill(vjust = 0.5, reverse = TRUE) } x_name <- x ggplot2::geom_text(mapping = ggplot2::aes_string(label = "lbl", x = x, y = "value"), position = position, inherit.aes = FALSE, size = datalabels.size, colour = datalabels.colour, lineheight = 0.75, data = function(x) { transformed <- rsi_df(data = x, translate_ab = translate_ab, combine_SI = combine_SI, combine_IR = combine_IR, minimum = minimum, language = language) transformed$gr <- transformed[, x_name, drop = TRUE] transformed %pm>% pm_group_by(gr) %pm>% pm_mutate(lbl = paste0("n=", isolates)) %pm>% pm_ungroup() %pm>% pm_select(-gr) }) }