df <- example_isolates |> filter_first_isolate(method = "e", episode_days = 14) |> mutate(mo = ifelse(mo_genus(mo) == "Klebsiella", as.mo("Klebsiella"), mo)) |> top_n_microorganisms(10) out_new <- df |> antibiogram(c("TZP","TZP+GEN","TZP+TOB"), wisca = TRUE, syndromic_group = "ward") out_nonwisca <- df |> antibiogram(c("TZP","TZP+GEN","TZP+TOB"), syndromic_group = "ward", mo_transform = function(x) "", digits = 1, minimum = 10, formatting_type = 14) |> as_tibble() |> select(-Pathogen) # parameters_amr.R#L110: no filter on ward, so pts are only in 1 ward, depending on order of data # parameters_amr.R: number of first isolates are determined on the whole data set, while Klebsiella is aggregated afterwards (=duplicates on genus level) source("~/Downloads/estimate_definition_amr.R")