# ==================================================================== # # TITLE # # AMR: An R Package for Working with Antimicrobial Resistance Data # # # # SOURCE # # https://github.com/msberends/AMR # # # # CITE AS # # Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C # # (2022). AMR: An R Package for Working with Antimicrobial Resistance # # Data. Journal of Statistical Software, 104(3), 1-31. # # doi:10.18637/jss.v104.i03 # # # # Developed at the University of Groningen, the Netherlands, in # # collaboration with non-profit organisations Certe Medical # # Diagnostics & Advice, and University Medical Center Groningen. # # # # This R package is free software; you can freely use and distribute # # it for both personal and commercial purposes under the terms of the # # GNU General Public License version 2.0 (GNU GPL-2), as published by # # the Free Software Foundation. # # We created this package for both routine data analysis and academic # # research and it was publicly released in the hope that it will be # # useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. # # # # Visit our website for the full manual and a complete tutorial about # # how to conduct AMR data analysis: https://msberends.github.io/AMR/ # # ==================================================================== # library(openxlsx) library(dplyr) library(tidyr) library(cleaner) library(AMR) # USE THIS FUNCTION TO READ THE EUCAST EXCEL FILE THAT CONTAINS THE BREAKPOINT TABLES read_EUCAST <- function(sheet, file, guideline_name) { message("\nGetting sheet: ", sheet) sheet.bak <- sheet uncertainties <- NULL add_uncertainties <- function(old, new) { if (is.null(old)) { new } else { bind_rows(old, new) } } raw_data <- read.xlsx( xlsxFile = file, sheet = sheet, colNames = FALSE, skipEmptyRows = FALSE, skipEmptyCols = FALSE, fillMergedCells = TRUE, na.strings = c("", "-", "NA", "IE", "IP") ) probable_rows <- suppressWarnings(raw_data %>% mutate_all(as.double) %>% summarise_all(~ sum(!is.na(.))) %>% unlist() %>% max()) if (probable_rows == 0) { message("NO ROWS FOUND") message("------------------------") return(NULL) } # in the info header in the Excel file, EUCAST mentions which genera are targeted if (sheet %like% "anaerob.*Gram.*posi") { sheet <- paste0(c( "Actinomyces", "Bifidobacterium", "Clostridioides", "Clostridium", "Cutibacterium", "Eggerthella", "Eubacterium", "Lactobacillus", "Propionibacterium", "Staphylococcus saccharolyticus" ), collapse = "_" ) } else if (sheet %like% "anaerob.*Gram.*nega") { sheet <- paste0(c( "Bacteroides", "Bilophila", "Fusobacterium", "Mobiluncus", "Parabacteroides", "Porphyromonas", "Prevotella" ), collapse = "_" ) } else if (sheet == "Streptococcus A,B,C,G") { sheet <- paste0(microorganisms %>% filter(genus == "Streptococcus") %>% mutate(lancefield = mo_name(mo, Lancefield = TRUE)) %>% filter(lancefield %like% "^Streptococcus group") %>% pull(fullname), collapse = "_" ) } else if (sheet %like% "PK.*PD") { sheet <- "UNKNOWN" } mo_sheet <- paste0(suppressMessages(as.mo(unlist(strsplit(sheet, "_")))), collapse = "|") if (!is.null(mo_uncertainties())) uncertainties <- add_uncertainties(uncertainties, mo_uncertainties()) set_columns_names <- function(x, cols) { colnames(x) <- cols[1:length(colnames(x))] x } get_mo <- function(x) { for (i in seq_len(length(x))) { y <- trimws2(unlist(strsplit(x[i], "(,|and)"))) y <- trimws2(gsub("[(].*[)]", "", y)) y <- suppressWarnings(suppressMessages(as.mo(y, allow_uncertain = FALSE))) if (!is.null(mo_uncertainties())) uncertainties <<- add_uncertainties(uncertainties, mo_uncertainties()) y <- y[!is.na(y) & y != "UNKNOWN"] x[i] <- paste(y, collapse = "|") } x } MICs_with_trailing_superscript <- c( seq(from = 0.0011, to = 0.0019, by = 0.0001), seq(from = 0.031, to = 0.039, by = 0.001), seq(from = 0.061, to = 0.069, by = 0.001), seq(from = 0.1251, to = 0.1259, by = 0.0001), seq(from = 0.251, to = 0.259, by = 0.001), seq(from = 0.51, to = 0.59, by = 0.01), seq(from = 11, to = 19, by = 1), seq(from = 161, to = 169, by = 01), seq(from = 21, to = 29, by = 1), seq(from = 321, to = 329, by = 1), seq(from = 41, to = 49, by = 1), seq(from = 81, to = 89, by = 1) ) has_superscript <- function(x) { # because due to floating point error, 0.1252 is not in: # seq(from = 0.1251, to = 0.1259, by = 0.0001) sapply(x, function(x) any(near(x, MICs_with_trailing_superscript))) } has_zone_diameters <- rep(any(unlist(raw_data) %like% "zone diameter"), nrow(raw_data)) cleaned <- raw_data %>% as_tibble() %>% set_columns_names(LETTERS) %>% transmute( drug = A, MIC_S = B, MIC_R = C, disk_dose = ifelse(has_zone_diameters, E, NA_character_), disk_S = ifelse(has_zone_diameters, `F`, NA_character_), disk_R = ifelse(has_zone_diameters, G, NA_character_) ) %>% filter( !is.na(drug), !(is.na(MIC_S) & is.na(MIC_R) & is.na(disk_S) & is.na(disk_R)), MIC_S %unlike% "(MIC|S ≤|note)", MIC_S %unlike% "^[-]", drug != MIC_S, ) %>% mutate( administration = case_when( drug %like% "[( ]oral" ~ "oral", drug %like% "[( ]iv" ~ "iv", TRUE ~ NA_character_ ), uti = ifelse(drug %like% "(UTI|urinary|urine)", TRUE, FALSE), systemic = ifelse(drug %like% "(systemic|septic)", TRUE, FALSE), mo = ifelse(drug %like% "([.]|spp)", get_mo(drug), mo_sheet) ) %>% # clean disk doses mutate(disk_dose = clean_character(disk_dose, remove = "[^0-9.-]")) %>% # clean MIC and disk values mutate( MIC_S = gsub(".,.", "", MIC_S), # remove superscript notes with comma, like 0.5^2,3 MIC_R = gsub(".,.", "", MIC_R), disk_S = gsub(".,.", "", disk_S), disk_R = gsub(".,.", "", disk_R), MIC_S = clean_double(MIC_S), # make them valid numeric values MIC_R = clean_double(MIC_R), disk_S = clean_integer(disk_S), disk_R = clean_integer(disk_R), # invalid MIC values have a superscript text, delete those MIC_S = ifelse(has_superscript(MIC_S), substr(MIC_S, 1, nchar(MIC_S) - 1), MIC_S ), MIC_R = ifelse(has_superscript(MIC_R), substr(MIC_R, 1, nchar(MIC_R) - 1), MIC_R ), # and some are just awful MIC_S = ifelse(MIC_S == 43.4, 4, MIC_S), MIC_R = ifelse(MIC_R == 43.4, 4, MIC_R), ) %>% # clean drug names mutate( drug = gsub(" ?[(, ].*$", "", drug), drug = gsub("[1-9]+$", "", drug), ab = as.ab(drug) ) %>% select(ab, mo, everything(), -drug) %>% as.data.frame(stringsAsFactors = FALSE) # new row for every different MO mentioned for (i in 1:nrow(cleaned)) { mo <- cleaned[i, "mo", drop = TRUE] if (grepl(pattern = "|", mo, fixed = TRUE)) { mo_vect <- unlist(strsplit(mo, "|", fixed = TRUE)) cleaned[i, "mo"] <- mo_vect[1] for (j in seq_len(length(mo_vect))) { cleaned <- bind_rows(cleaned, cleaned[i, , drop = FALSE]) cleaned[nrow(cleaned), "mo"] <- mo_vect[j] } } } cleaned <- cleaned %>% distinct(ab, mo, administration, uti, systemic, .keep_all = TRUE) %>% arrange(ab, mo) %>% mutate_at(c("MIC_S", "MIC_R", "disk_S", "disk_R"), as.double) %>% pivot_longer(c("MIC_S", "MIC_R", "disk_S", "disk_R"), "type") %>% mutate( method = ifelse(type %like% "MIC", "MIC", "DISK"), type = gsub("^.*_", "breakpoint_", type) ) %>% pivot_wider(names_from = type, values_from = value) %>% mutate( guideline = guideline_name, disk_dose = ifelse(method == "DISK", disk_dose, NA_character_), mo = ifelse(mo == "", mo_sheet, mo) ) %>% filter(!(is.na(breakpoint_S) & is.na(breakpoint_R))) %>% # comply with rsi_translation for now transmute(guideline, method, site = case_when( uti ~ "UTI", systemic ~ "Systemic", TRUE ~ administration ), mo, ab, ref_tbl = sheet.bak, disk_dose = ifelse(!is.na(disk_dose), paste0(disk_dose, "ug"), NA_character_), breakpoint_S, breakpoint_R ) %>% as.data.frame(stringsAsFactors = FALSE) if (!is.null(uncertainties)) { print(uncertainties %>% distinct(input, mo, .keep_all = TRUE)) } message("Estimated: ", probable_rows, ", gained: ", cleaned %>% count(ab) %>% nrow()) message("------------------------") cleaned } # Actual import ----------------------------------------------------------- file <- "data-raw/v_11.0_Breakpoint_Tables.xlsx" sheets <- readxl::excel_sheets(file) guideline_name <- "EUCAST 2021" sheets_to_analyse <- sheets[!sheets %in% c("Content", "Changes", "Notes", "Guidance", "Dosages", "Technical uncertainty", "Topical agents")] # takes the longest time: new_EUCAST <- read_EUCAST( sheet = sheets_to_analyse[1], file = file, guideline_name = guideline_name ) for (i in 2:length(sheets_to_analyse)) { tryCatch( new_EUCAST <<- bind_rows( new_EUCAST, read_EUCAST( sheet = sheets_to_analyse[i], file = file, guideline_name = guideline_name ) ), error = function(e) message(e$message) ) } # 2021-07-12 fix for Morganellaceae (check other lines too next time) morg <- rsi_translation %>% as_tibble() %>% filter( ab == "IPM", guideline == "EUCAST 2021", mo == as.mo("Enterobacterales") ) %>% mutate(mo = as.mo("Morganellaceae")) morg[which(morg$method == "MIC"), "breakpoint_S"] <- 0.001 morg[which(morg$method == "MIC"), "breakpoint_R"] <- 4 morg[which(morg$method == "DISK"), "breakpoint_S"] <- 50 morg[which(morg$method == "DISK"), "breakpoint_R"] <- 19 rsi_translation <- rsi_translation %>% bind_rows(morg) %>% bind_rows(morg %>% mutate(guideline = "EUCAST 2020")) %>% arrange(desc(guideline), ab, mo, method)