Skip to contents

These functions determine which items in a vector can be considered (the start of) a new episode, based on the argument episode_days. This can be used to determine clinical episodes for any epidemiological analysis. The get_episode() function returns the index number of the episode per group, while the is_new_episode() function returns values TRUE/FALSE to indicate whether an item in a vector is the start of a new episode.

Usage

get_episode(x, episode_days, ...)

is_new_episode(x, episode_days, ...)

Arguments

x

vector of dates (class Date or POSIXt), will be sorted internally to determine episodes

episode_days

required episode length in days, can also be less than a day or Inf, see Details

...

ignored, only in place to allow future extensions

Value

  • get_episode(): a double vector

  • is_new_episode(): a logical vector

Details

Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least episode_days days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least episode_days days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.

The first_isolate() function is a wrapper around the is_new_episode() function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.

The dplyr package is not required for these functions to work, but these functions do support variable grouping and work conveniently inside dplyr verbs such as filter(), mutate() and summarise().

See also

Examples

# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 200), ]

get_episode(df$date, episode_days = 60) # indices
#>   [1]  9 46 28 50 35 57 44 17  9 56 15  7 12 51 27 22 32 14 29 44 55 54 12  3 15
#>  [26] 46  6  5 47 12 40  5 51 16 40 46 26 37  1 50  3 23 13 11 19 25 54 36 49 15
#>  [51] 63 19 55 54  5 62 11 55  6 50 60 44 52 45 57 40 10 46 19  2  6  2 12 19  2
#>  [76] 37  7 16 47 59 49 24 57 19 25 48 43 28 59 56 59 41  4 23 25 58 56 32 43 34
#> [101] 33 42 33 17  7 48 12 50 48 15 49  8 34 59 25 49 29 35 61 58 23 63 59 25 40
#> [126] 57 46 20 21 26 16 12 16  7 27  8 21 38 48  8 26 52 51 41 24 42 60 11 52 31
#> [151] 36 26 24 54 20 53 23 61 52 57 25 55 43 63 30 38 47 60  5 62  3 61  5 27 14
#> [176] 37 12 25 63 54 30 39  1 15 55  5 55 34 38 63 20 18 24 31 12 32 20  2  7 32
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#>   [1]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
#>  [13] FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
#>  [25] FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE
#>  [37] FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE
#>  [49]  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE
#>  [61]  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE
#>  [73] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#>  [85] FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE
#>  [97] FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
#> [109] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
#> [121]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE
#> [133] FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE
#> [145]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
#> [157] FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE
#> [169] FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
#> [181] FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE
#> [193] FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE

# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 3 × 46
#>   date       patient   age gender ward     mo           PEN   OXA   FLC   AMX  
#>   <date>     <chr>   <dbl> <chr>  <chr>    <mo>         <sir> <sir> <sir> <sir>
#> 1 2002-11-16 762305     87 F      Clinical B_BCTRD_FRGL R     NA    NA    R    
#> 2 2002-11-16 762305     87 F      Clinical B_PROTS_MRBL R     NA    NA    NA   
#> 3 2002-09-23 F35553     51 M      ICU      B_STPHY_AURS S     NA    S     NA   
#> # … with 36 more variables: AMC <sir>, AMP <sir>, TZP <sir>, CZO <sir>,
#> #   FEP <sir>, CXM <sir>, FOX <sir>, CTX <sir>, CAZ <sir>, CRO <sir>,
#> #   GEN <sir>, TOB <sir>, AMK <sir>, KAN <sir>, TMP <sir>, SXT <sir>,
#> #   NIT <sir>, FOS <sir>, LNZ <sir>, CIP <sir>, MFX <sir>, VAN <sir>,
#> #   TEC <sir>, TCY <sir>, TGC <sir>, DOX <sir>, ERY <sir>, CLI <sir>,
#> #   AZM <sir>, IPM <sir>, MEM <sir>, MTR <sir>, CHL <sir>, COL <sir>,
#> #   MUP <sir>, RIF <sir>

# the functions also work for less than a day, e.g. to include one per hour:
get_episode(c(
  Sys.time(),
  Sys.time() + 60 * 60
),
episode_days = 1 / 24
)
#> [1] 1 2

# \donttest{
if (require("dplyr")) {
  # is_new_episode() can also be used in dplyr verbs to determine patient
  # episodes based on any (combination of) grouping variables:
  df %>%
    mutate(condition = sample(
      x = c("A", "B", "C"),
      size = 200,
      replace = TRUE
    )) %>%
    group_by(condition) %>%
    mutate(new_episode = is_new_episode(date, 365)) %>%
    select(patient, date, condition, new_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   condition [3]
#>    patient date       condition new_episode
#>    <chr>   <date>     <chr>     <lgl>      
#>  1 F24801  2004-02-10 A         TRUE       
#>  2 263940  2013-03-05 C         FALSE      
#>  3 E95747  2008-06-30 A         FALSE      
#>  4 414858  2014-08-29 A         FALSE      
#>  5 823896  2010-03-04 B         FALSE      
#>  6 976813  2016-05-09 A         FALSE      
#>  7 107DD1  2012-09-03 B         TRUE       
#>  8 89F819  2005-11-27 C         FALSE      
#>  9 89F578  2004-02-28 A         FALSE      
#> 10 329C35  2016-04-03 B         FALSE      
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward, patient) %>%
    transmute(date,
      patient,
      new_index = get_episode(date, 60),
      new_logical = is_new_episode(date, 60)
    )
}
#> # A tibble: 200 × 5
#> # Groups:   ward, patient [182]
#>    ward     date       patient new_index new_logical
#>    <chr>    <date>     <chr>       <dbl> <lgl>      
#>  1 ICU      2004-02-10 F24801          1 TRUE       
#>  2 Clinical 2013-03-05 263940          1 TRUE       
#>  3 Clinical 2008-06-30 E95747          1 TRUE       
#>  4 Clinical 2014-08-29 414858          1 TRUE       
#>  5 Clinical 2010-03-04 823896          1 TRUE       
#>  6 Clinical 2016-05-09 976813          1 TRUE       
#>  7 Clinical 2012-09-03 107DD1          1 TRUE       
#>  8 ICU      2005-11-27 89F819          1 TRUE       
#>  9 Clinical 2004-02-28 89F578          1 TRUE       
#> 10 Clinical 2016-04-03 329C35          1 TRUE       
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward) %>%
    summarise(
      n_patients = n_distinct(patient),
      n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
      n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
      n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
    )
}
#> # A tibble: 3 × 5
#>   ward       n_patients n_episodes_365 n_episodes_60 n_episodes_30
#>   <chr>           <int>          <int>         <int>         <int>
#> 1 Clinical          124             15            57            81
#> 2 ICU                47             12            35            42
#> 3 Outpatient         11              6            10            10
if (require("dplyr")) {

  # grouping on patients and microorganisms leads to the same
  # results as first_isolate() when using 'episode-based':
  x <- df %>%
    filter_first_isolate(
      include_unknown = TRUE,
      method = "episode-based"
    )

  y <- df %>%
    group_by(patient, mo) %>%
    filter(is_new_episode(date, 365)) %>%
    ungroup()

  identical(x, y)
}
#> Including isolates from ICU.
#> [1] TRUE
if (require("dplyr")) {

  # but is_new_episode() has a lot more flexibility than first_isolate(),
  # since you can now group on anything that seems relevant:
  df %>%
    group_by(patient, mo, ward) %>%
    mutate(flag_episode = is_new_episode(date, 365)) %>%
    select(group_vars(.), flag_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   patient, mo, ward [192]
#>    patient mo           ward     flag_episode
#>    <chr>   <mo>         <chr>    <lgl>       
#>  1 F24801  B_STRPT_GRPB ICU      TRUE        
#>  2 263940  B_STPHY_HMNS Clinical TRUE        
#>  3 E95747  B_KLBSL_PNMN Clinical TRUE        
#>  4 414858  B_ESCHR_COLI Clinical TRUE        
#>  5 823896  B_STPHY_CONS Clinical TRUE        
#>  6 976813  B_STPHY_AURS Clinical TRUE        
#>  7 107DD1  B_STPHY_CONS Clinical TRUE        
#>  8 89F819  B_CRYNB      ICU      TRUE        
#>  9 89F578  B_STPHY_CONS Clinical TRUE        
#> 10 329C35  B_ESCHR_COLI Clinical TRUE        
#> # … with 190 more rows
# }