# ==================================================================== # # TITLE # # Antimicrobial Resistance (AMR) Analysis # # # # AUTHORS # # Berends MS (m.s.berends@umcg.nl), Luz CF (c.f.luz@umcg.nl) # # # # LICENCE # # This program is free software; you can redistribute it and/or modify # # it under the terms of the GNU General Public License version 2.0, # # as published by the Free Software Foundation. # # # # This program is distributed in the hope that it will be useful, # # but WITHOUT ANY WARRANTY; without even the implied warranty of # # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # # GNU General Public License for more details. # # ==================================================================== # #' Frequency table #' #' Create a frequency table of a vector with items or a data frame. Supports quasiquotation and markdown for reports. \code{top_freq} can be used to get the top/bottom \emph{n} items of a frequency table, with counts as names. #' @param x vector of any class or a \code{\link{data.frame}}, \code{\link{tibble}} (may contain a grouping variable) or \code{\link{table}} #' @param ... up to nine different columns of \code{x} when \code{x} is a \code{data.frame} or \code{tibble}, to calculate frequencies from - see Examples #' @param sort.count sort on count, i.e. frequencies. This will be \code{TRUE} at default for everything except when using grouping variables. #' @param nmax number of row to print. The default, \code{15}, uses \code{\link{getOption}("max.print.freq")}. Use \code{nmax = 0}, \code{nmax = Inf}, \code{nmax = NULL} or \code{nmax = NA} to print all rows. #' @param na.rm a logical value indicating whether \code{NA} values should be removed from the frequency table. The header (if set) will always print the amount of \code{NA}s. #' @param row.names a logical value indicating whether row indices should be printed as \code{1:nrow(x)} #' @param markdown a logical value indicating whether the frequency table should be printed in markdown format. This will print all rows and is default behaviour in non-interactive R sessions (like when knitting RMarkdown files). #' @param digits how many significant digits are to be used for numeric values in the header (not for the items themselves, that depends on \code{\link{getOption}("digits")}) #' @param quote a logical value indicating whether or not strings should be printed with surrounding quotes #' @param header a logical value indicating whether an informative header should be printed #' @param title text to show above frequency table, at default to tries to coerce from the variables passed to \code{x} #' @param na a character string to should be used to show empty (\code{NA}) values (only useful when \code{na.rm = FALSE}) #' @param sep a character string to separate the terms when selecting multiple columns #' @param f a frequency table #' @param n number of top \emph{n} items to return, use -n for the bottom \emph{n} items. It will include more than \code{n} rows if there are ties. #' @details Frequency tables (or frequency distributions) are summaries of the distribution of values in a sample. With the `freq` function, you can create univariate frequency tables. Multiple variables will be pasted into one variable, so it forces a univariate distribution. This package also has a vignette available to explain the use of this function further, run \code{browseVignettes("AMR")} to read it. #' #' For numeric values of any class, these additional values will all be calculated with \code{na.rm = TRUE} and shown into the header: #' \itemize{ #' \item{Mean, using \code{\link[base]{mean}}} #' \item{Standard Deviation, using \code{\link[stats]{sd}}} #' \item{Coefficient of Variation (CV), the standard deviation divided by the mean} #' \item{Mean Absolute Deviation (MAD), using \code{\link[stats]{mad}}} #' \item{Tukey Five-Number Summaries (minimum, Q1, median, Q3, maximum), using \code{\link[stats]{fivenum}}} #' \item{Interquartile Range (IQR) calculated as \code{Q3 - Q1} using the Tukey Five-Number Summaries, i.e. \strong{not} using the \code{\link[stats]{quantile}} function} #' \item{Coefficient of Quartile Variation (CQV, sometimes called coefficient of dispersion), calculated as \code{(Q3 - Q1) / (Q3 + Q1)} using the Tukey Five-Number Summaries} #' \item{Outliers (total count and unique count), using \code{\link[grDevices]{boxplot.stats}}} #' } #' #' For dates and times of any class, these additional values will be calculated with \code{na.rm = TRUE} and shown into the header: #' \itemize{ #' \item{Oldest, using \code{\link{min}}} #' \item{Newest, using \code{\link{max}}, with difference between newest and oldest} #' \item{Median, using \code{\link[stats]{median}}, with percentage since oldest} #' } #' #' #' The function \code{top_freq} uses \code{\link[dplyr]{top_n}} internally and will include more than \code{n} rows if there are ties. #' @importFrom stats fivenum sd mad #' @importFrom grDevices boxplot.stats #' @importFrom dplyr %>% arrange arrange_at desc filter_at funs group_by mutate mutate_at n_distinct pull select summarise tibble ungroup vars all_vars #' @importFrom utils browseVignettes #' @importFrom hms is.hms #' @importFrom crayon red green silver #' @keywords summary summarise frequency freq #' @rdname freq #' @name freq #' @return A \code{data.frame} (with an additional class \code{"frequency_tbl"}) with five columns: \code{item}, \code{count}, \code{percent}, \code{cum_count} and \code{cum_percent}. #' @export #' @examples #' library(dplyr) #' #' # this all gives the same result: #' freq(septic_patients$hospital_id) #' freq(septic_patients[, "hospital_id"]) #' septic_patients$hospital_id %>% freq() #' septic_patients[, "hospital_id"] %>% freq() #' septic_patients %>% freq("hospital_id") #' septic_patients %>% freq(hospital_id) #<- easiest to remember (tidyverse) #' #' #' # you could also use `select` or `pull` to get your variables #' septic_patients %>% #' filter(hospital_id == "A") %>% #' select(mo) %>% #' freq() #' #' #' # multiple selected variables will be pasted together #' septic_patients %>% #' left_join_microorganisms %>% #' filter(hospital_id == "A") %>% #' freq(genus, species) #' #' #' # group a variable and analyse another #' septic_patients %>% #' group_by(hospital_id) %>% #' freq(gender) #' #' #' # get top 10 bugs of hospital A as a vector #' septic_patients %>% #' filter(hospital_id == "A") %>% #' freq(mo) %>% #' top_freq(10) #' #' #' # save frequency table to an object #' years <- septic_patients %>% #' mutate(year = format(date, "%Y")) %>% #' freq(year) #' #' #' # show only the top 5 #' years %>% print(nmax = 5) #' #' #' # save to an object with formatted percentages #' years <- format(years) #' #' #' # print a histogram of numeric values #' septic_patients %>% #' freq(age) %>% #' hist() #' #' #' # or print all points to a regular plot #' septic_patients %>% #' freq(age) %>% #' plot() #' #' #' # transform to a data.frame or tibble #' septic_patients %>% #' freq(age) %>% #' as.data.frame() #' #' #' # or transform (back) to a vector #' septic_patients %>% #' freq(age) %>% #' as.vector() #' #' identical(septic_patients %>% #' freq(age) %>% #' as.vector() %>% #' sort(), #' sort(septic_patients$age)) # TRUE #' #' #' # it also supports `table` objects #' table(septic_patients$gender, #' septic_patients$age) %>% #' freq(sep = " **sep** ") #' #' #' # only get selected columns #' septic_patients %>% #' freq(hospital_id) %>% #' select(item, percent) #' #' septic_patients %>% #' freq(hospital_id) %>% #' select(-count, -cum_count) #' #' #' # check differences between frequency tables #' diff(freq(septic_patients$trim), #' freq(septic_patients$trsu)) frequency_tbl <- function(x, ..., sort.count = TRUE, nmax = getOption("max.print.freq"), na.rm = TRUE, row.names = TRUE, markdown = !interactive(), digits = 2, quote = FALSE, header = !markdown, title = NULL, na = "", sep = " ") { mult.columns <- 0 x.group = character(0) df <- NULL x.name <- NULL cols <- NULL if (any(class(x) == 'list')) { cols <- names(x) x <- as.data.frame(x, stringsAsFactors = FALSE) x.name <- "a list" } else if (any(class(x) == 'matrix')) { x <- as.data.frame(x, stringsAsFactors = FALSE) x.name <- "a matrix" cols <- colnames(x) if (all(cols %like% 'V[0-9]')) { cols <- NULL } } if (any(class(x) == 'data.frame')) { x.group <- group_vars(x) if (length(x.group) > 1) { x.group <- x.group[1L] warning("freq supports one grouping variable, only `", x.group, "` will be kept.", call. = FALSE) } if (is.null(x.name)) { x.name <- deparse(substitute(x)) } if (x.name == ".") { x.name <- NULL } dots <- base::eval(base::substitute(base::alist(...))) ndots <- length(dots) if (ndots < 10) { cols <- as.character(dots) if (!all(cols %in% colnames(x))) { stop("one or more columns not found: `", paste(cols, collapse = "`, `"), '`', call. = FALSE) } if (length(x.group) > 0) { x.group_cols <- c(x.group, cols) df <- x %>% group_by_at(vars(x.group_cols)) %>% summarise(count = n()) if (na.rm == TRUE) { df <- df %>% filter_at(vars(cols), all_vars(!is.na(.))) } if (!missing(sort.count)) { if (sort.count == TRUE) { df <- df %>% arrange_at(c(x.group, "count"), desc) } } df <- df %>% mutate(cum_count = cumsum(count)) df.topleft <- df[1, 1] df <- df %>% ungroup() %>% # do not repeat group labels mutate_at(vars(x.group), funs(ifelse(lag(.) == ., "", .))) df[1, 1] <- df.topleft colnames(df)[1:2] <- c("group", "item") } if (length(cols) > 0) { x <- x[, cols] } } else if (ndots >= 10) { stop('A maximum of 9 columns can be analysed at the same time.', call. = FALSE) } else { cols <- NULL } } else if (any(class(x) == 'table')) { x <- as.data.frame(x, stringsAsFactors = FALSE) # now this DF contains 3 columns: the 2 vars and a Freq column # paste the first 2 cols and repeat them Freq times: x <- rep(x = do.call(paste, c(x[colnames(x)[1:2]], sep = sep)), times = x$Freq) x.name <- "a `table` object" cols <- NULL #mult.columns <- 2 } else { x.name <- NULL cols <- NULL } if (!is.null(ncol(x))) { if (ncol(x) == 1 & any(class(x) == 'data.frame')) { x <- x %>% pull(1) } else if (ncol(x) < 10) { mult.columns <- ncol(x) x <- do.call(paste, c(x[colnames(x)], sep = sep)) } else { stop('A maximum of 9 columns can be analysed at the same time.', call. = FALSE) } } if (mult.columns > 1) { NAs <- x[is.na(x) | x == trimws(strrep('NA ', mult.columns))] } else { NAs <- x[is.na(x)] } if (na.rm == TRUE) { x_class <- class(x) x <- x[!x %in% NAs] class(x) <- x_class } # if (sort.count == FALSE & 'factor' %in% class(x)) { # warning("Sorting a factor sorts on factor level, not necessarily alphabetically.", call. = FALSE) # } header_txt <- character(0) markdown_line <- '' if (markdown == TRUE) { markdown_line <- '\n' } x_align <- 'l' if (mult.columns > 0) { header_txt <- header_txt %>% paste0(markdown_line, 'Columns: ', mult.columns) } else { header_txt <- header_txt %>% paste0(markdown_line, 'Class: ', class(x) %>% rev() %>% paste(collapse = " > ")) if (!mode(x) %in% class(x)) { header_txt <- header_txt %>% paste0(silver(paste0(" (", mode(x), ")"))) } } na_txt <- paste0(NAs %>% length() %>% format(), ' = ', (NAs %>% length() / (NAs %>% length() + x %>% length())) %>% percent(force_zero = TRUE, round = digits) %>% sub('NaN', '0', ., fixed = TRUE)) if (!na_txt %like% "^0 =") { na_txt <- red(na_txt) } else { na_txt <- green(na_txt) } header_txt <- header_txt %>% paste0(markdown_line, '\nLength: ', (NAs %>% length() + x %>% length()) %>% format(), ' (of which NA: ', na_txt, ')') header_txt <- header_txt %>% paste0(markdown_line, '\nUnique: ', x %>% n_distinct() %>% format()) if (NROW(x) > 0 & any(class(x) == "character")) { header_txt <- header_txt %>% paste0('\n') header_txt <- header_txt %>% paste0(markdown_line, '\nShortest: ', x %>% base::nchar() %>% base::min(na.rm = TRUE)) header_txt <- header_txt %>% paste0(markdown_line, '\nLongest: ', x %>% base::nchar() %>% base::max(na.rm = TRUE)) } if (NROW(x) > 0 & any(class(x) == "difftime")) { header_txt <- header_txt %>% paste0('\n') header_txt <- header_txt %>% paste(markdown_line, '\nUnits: ', attributes(x)$units) x <- as.double(x) # after this, the numeric header_txt continues } if (NROW(x) > 0 & any(class(x) %in% c('double', 'integer', 'numeric', 'raw', 'single'))) { # right align number Tukey_five <- stats::fivenum(x, na.rm = TRUE) x_align <- 'r' header_txt <- header_txt %>% paste0('\n') header_txt <- header_txt %>% paste(markdown_line, '\nMean: ', x %>% base::mean(na.rm = TRUE) %>% format(digits = digits)) header_txt <- header_txt %>% paste0(markdown_line, '\nStd. dev.: ', x %>% stats::sd(na.rm = TRUE) %>% format(digits = digits), ' (CV: ', x %>% cv(na.rm = TRUE) %>% format(digits = digits), ', MAD: ', x %>% stats::mad(na.rm = TRUE) %>% format(digits = digits), ')') header_txt <- header_txt %>% paste0(markdown_line, '\nFive-Num: ', Tukey_five %>% format(digits = digits) %>% trimws() %>% paste(collapse = ' | '), ' (IQR: ', (Tukey_five[4] - Tukey_five[2]) %>% format(digits = digits), ', CQV: ', x %>% cqv(na.rm = TRUE) %>% format(digits = digits), ')') outlier_length <- length(boxplot.stats(x)$out) header_txt <- header_txt %>% paste0(markdown_line, '\nOutliers: ', outlier_length) if (outlier_length > 0) { header_txt <- header_txt %>% paste0(' (unique count: ', boxplot.stats(x)$out %>% n_distinct(), ')') } } if (NROW(x) > 0 & any(class(x) == "rsi")) { header_txt <- header_txt %>% paste0('\n') cnt_S <- sum(x == "S", na.rm = TRUE) cnt_IR <- sum(x %in% c("I", "R"), na.rm = TRUE) header_txt <- header_txt %>% paste(markdown_line, '\n%IR: ', (cnt_IR / sum(!is.na(x), na.rm = TRUE)) %>% percent(force_zero = TRUE, round = digits), paste0('(ratio S : IR = 1.0 : ', (cnt_IR / cnt_S) %>% format(digits = 1, nsmall = 1), ")")) if (NROW(x) < 30) { header_txt <- header_txt %>% paste(markdown_line, red('\nToo few isolates for reliable resistance interpretation.')) } } formatdates <- "%e %B %Y" # = d mmmm yyyy if (is.hms(x)) { x <- x %>% as.POSIXlt() formatdates <- "%H:%M:%S" } if (NROW(x) > 0 & any(class(x) %in% c('Date', 'POSIXct', 'POSIXlt'))) { header_txt <- header_txt %>% paste0('\n') mindate <- x %>% min(na.rm = TRUE) maxdate <- x %>% max(na.rm = TRUE) maxdate_days <- difftime(maxdate, mindate, units = 'auto') %>% as.double() mediandate <- x %>% median(na.rm = TRUE) median_days <- difftime(mediandate, mindate, units = 'auto') %>% as.double() if (formatdates == "%H:%M:%S") { # hms header_txt <- header_txt %>% paste0(markdown_line, '\nEarliest: ', mindate %>% format(formatdates) %>% trimws()) header_txt <- header_txt %>% paste0(markdown_line, '\nLatest: ', maxdate %>% format(formatdates) %>% trimws(), ' (+', difftime(maxdate, mindate, units = 'mins') %>% as.double() %>% format(digits = digits), ' min.)') } else { # other date formats header_txt <- header_txt %>% paste0(markdown_line, '\nOldest: ', mindate %>% format(formatdates) %>% trimws()) header_txt <- header_txt %>% paste0(markdown_line, '\nNewest: ', maxdate %>% format(formatdates) %>% trimws(), ' (+', difftime(maxdate, mindate, units = 'auto') %>% as.double() %>% format(digits = digits), ')') } header_txt <- header_txt %>% paste0(markdown_line, '\nMedian: ', mediandate %>% format(formatdates) %>% trimws(), ' (~', percent(median_days / maxdate_days, round = 0), ')') } if (any(class(x) == 'POSIXlt')) { x <- x %>% format(formatdates) } nmax.set <- !missing(nmax) if (!nmax.set & is.null(nmax) & is.null(base::getOption("max.print.freq", default = NULL))) { # default for max print setting nmax <- 15 } else if (is.null(nmax)) { nmax <- length(x) } if (nmax %in% c(0, Inf, NA, NULL)) { nmax <- length(x) } column_names <- c('Item', 'Count', 'Percent', 'Cum. Count', 'Cum. Percent') column_names_df <- c('item', 'count', 'percent', 'cum_count', 'cum_percent') column_align <- c(x_align, 'r', 'r', 'r', 'r') if (is.null(df)) { # create table with counts and percentages df <- tibble(item = x) %>% group_by(item) %>% summarise(count = n()) # sort according to setting if (sort.count == TRUE) { df <- df %>% arrange(desc(count), item) } else { df <- df %>% arrange(item) } } else { column_names <- c("Group", column_names) column_names_df <-c("group", column_names_df) column_align <- c("l", column_align) } if (df$item %>% paste(collapse = ',') %like% '\033') { # remove escape char # see https://en.wikipedia.org/wiki/Escape_character#ASCII_escape_character df <- df %>% mutate(item = item %>% gsub('\033', ' ', ., fixed = TRUE)) } if (quote == TRUE) { df$item <- paste0('"', df$item, '"') if (length(x.group) != 0) { df$group <- paste0('"', df$group, '"') } } df <- as.data.frame(df, stringsAsFactors = FALSE) df$percent <- df$count / base::sum(df$count, na.rm = TRUE) if (length(x.group) == 0) { df$cum_count <- base::cumsum(df$count) } df$cum_percent <- df$cum_count / base::sum(df$count, na.rm = TRUE) if (length(x.group) != 0) { # sort columns df <- df[, column_names_df] } if (markdown == TRUE) { tbl_format <- 'markdown' } else { tbl_format <- 'pandoc' } if (!is.null(title)) { title <- trimws(gsub("^Frequency table of", "", title[1L], ignore.case = TRUE)) } structure(.Data = df, class = c('frequency_tbl', class(df)), opt = list(title = title, data = x.name, vars = cols, group_var = x.group, header = header, header_txt = header_txt, row_names = row.names, column_names = column_names, column_align = column_align, tbl_format = tbl_format, na = na, nmax = nmax, nmax.set = nmax.set)) } #' @rdname freq #' @export freq <- frequency_tbl #' @rdname freq #' @export #' @importFrom dplyr top_n pull top_freq <- function(f, n) { if (!'frequency_tbl' %in% class(f)) { stop('top_freq can only be applied to frequency tables', call. = FALSE) } if (!is.numeric(n) | length(n) != 1L) { stop('For top_freq, `nmax` must be a number of length 1', call. = FALSE) } top <- f %>% top_n(n, count) vect <- top %>% pull(item) names(vect) <- top %>% pull(count) if (length(vect) > abs(n)) { message("top_freq: selecting ", length(vect), " items instead of ", abs(n), ", because of ties") } vect } #' @noRd #' @exportMethod diff.frequency_tbl #' @importFrom dplyr %>% full_join mutate #' @export diff.frequency_tbl <- function(x, y, ...) { # check classes if (!"frequency_tbl" %in% class(x) | !"frequency_tbl" %in% class(y)) { stop("Both x and y must be a frequency table.") } cat("Differences between frequency tables") if (identical(x, y)) { cat("\n\nNo differences found.\n") return(invisible()) } x.attr <- attributes(x)$opt # only keep item and count x <- x[, 1:2] y <- y[, 1:2] x <- x %>% full_join(y, by = colnames(x)[1], suffix = c(".x", ".y")) %>% mutate( diff = case_when( is.na(count.y) ~ -count.x, is.na(count.x) ~ count.y, TRUE ~ count.y - count.x)) %>% mutate( diff.percent = percent( diff / count.x, force_zero = TRUE)) %>% mutate(diff = ifelse(diff %like% '^-', diff, paste0("+", diff)), diff.percent = ifelse(diff.percent %like% '^-', diff.percent, paste0("+", diff.percent))) print( knitr::kable(x, format = x.attr$tbl_format, col.names = c("Item", "Count #1", "Count #2", "Difference", "Diff. percent"), align = paste0(x.attr$column_align[1], "rrrr"), padding = 1) ) } #' @rdname freq #' @exportMethod print.frequency_tbl #' @importFrom knitr kable #' @importFrom dplyr n_distinct #' @importFrom crayon bold silver #' @export print.frequency_tbl <- function(x, nmax = getOption("max.print.freq", default = 15), markdown = !interactive(), header = !markdown, ...) { opt <- attr(x, 'opt') if (length(opt$vars) == 0) { opt$vars <- NULL } if (is.null(opt$title)) { if (!is.null(opt$data) & !is.null(opt$vars)) { title <- paste0("`", paste0(opt$vars, collapse = "` and `"), "` from ", opt$data) } else if (!is.null(opt$data) & is.null(opt$vars)) { title <- opt$data } else if (is.null(opt$data) & !is.null(opt$vars)) { title <- paste0("`", paste0(opt$vars, collapse = "` and `"), "`") } else { title <- "" } if (title != "" & length(opt$group_var) != 0) { group_var <- paste0("(grouped by `", opt$group_var, "`)") if (opt$tbl_format == "pandoc") { group_var <- silver(group_var) } title <- paste(title, group_var) } title <- paste("Frequency table of", trimws(title)) } else { title <- opt$title } if (!missing(nmax)) { opt$nmax <- nmax opt$nmax.set <- TRUE } dots <- list(...) if ("markdown" %in% names(dots)) { if (dots$markdown == TRUE) { opt$tbl_format <- "markdown" } else { opt$tbl_format <- "pandoc" } } if (!missing(markdown)) { opt$tbl_format <- "markdown" } if (!missing(header)) { opt$header <- header } # bold title if (opt$tbl_format == "pandoc") { title <- bold(title) } else if (opt$tbl_format == "markdown") { title <- paste0("\n**", title, "**") } if (opt$header == TRUE) { cat(title, "\n") if (!is.null(opt$header_txt)) { cat(opt$header_txt) } } else if (opt$tbl_format == "markdown") { # do print title as caption in markdown cat("\n", title, sep = "") } if (NROW(x) == 0) { cat('\n\nNo observations.\n') return(invisible()) } # save old NA setting for kable opt.old <- options()$knitr.kable.NA if (is.null(opt$na)) { opt$na <- "" } options(knitr.kable.NA = opt$na) if (nrow(x) > opt$nmax & opt$tbl_format != "markdown") { x.rows <- nrow(x) x.unprinted <- base::sum(x[(opt$nmax + 1):nrow(x), 'count'], na.rm = TRUE) x.printed <- base::sum(x$count) - x.unprinted if (opt$nmax.set == TRUE) { nmax <- opt$nmax } else { nmax <- getOption("max.print.freq", default = 15) } x <- x[1:nmax,] if (opt$nmax.set == TRUE) { footer <- paste('[ reached `nmax = ', opt$nmax, '`', sep = '') } else { footer <- '[ reached getOption("max.print.freq")' } footer <- paste(footer, ' -- omitted ', format(x.rows - opt$nmax), ' entries, n = ', format(x.unprinted), ' (', (x.unprinted / (x.unprinted + x.printed)) %>% percent(force_zero = TRUE), ') ]\n', sep = '') if (opt$tbl_format == "pandoc") { footer <- silver(footer) # only silver in regular printing } } else { footer <- NULL } if (any(class(x$item) %in% c('double', 'integer', 'numeric', 'raw', 'single'))) { x$item <- format(x$item) } if ("item" %in% colnames(x)) { x$item <- format(x$item) } else { opt$column_names <- opt$column_names[!opt$column_names == "Item"] } if ("count" %in% colnames(x)) { if (all(x$count == 1)) { warning('All observations are unique.', call. = FALSE) } x$count <- format(x$count) } else { opt$column_names <- opt$column_names[!opt$column_names == "Count"] } if ("percent" %in% colnames(x)) { x$percent <- percent(x$percent, force_zero = TRUE) } else { opt$column_names <- opt$column_names[!opt$column_names == "Percent"] } if ("cum_count" %in% colnames(x)) { x$cum_count <- format(x$cum_count) } else { opt$column_names <- opt$column_names[!opt$column_names == "Cum. Count"] } if ("cum_percent" %in% colnames(x)) { x$cum_percent <- percent(x$cum_percent, force_zero = TRUE) } else { opt$column_names <- opt$column_names[!opt$column_names == "Cum. Percent"] } if (opt$tbl_format == "markdown") { cat("\n") } print( knitr::kable(x, format = opt$tbl_format, row.names = opt$row_names, col.names = opt$column_names, align = opt$column_align, padding = 1) ) if (!is.null(footer)) { cat(footer) } if (opt$tbl_format == "markdown") { cat("\n\n") } else { cat('\n') } # reset old kable setting options(knitr.kable.NA = opt.old) return(invisible()) } #' @noRd #' @exportMethod as.data.frame.frequency_tbl #' @export as.data.frame.frequency_tbl <- function(x, ...) { attr(x, 'package') <- NULL attr(x, 'opt') <- NULL as.data.frame.data.frame(x, ...) } #' @noRd #' @exportMethod as_tibble.frequency_tbl #' @export #' @importFrom dplyr as_tibble as_tibble.frequency_tbl <- function(x, validate = TRUE, ..., rownames = NA) { attr(x, 'package') <- NULL attr(x, 'opt') <- NULL as_tibble(x = as.data.frame(x), validate = validate, ..., rownames = rownames) } #' @noRd #' @exportMethod hist.frequency_tbl #' @export #' @importFrom graphics hist hist.frequency_tbl <- function(x, breaks = "Sturges", main = NULL, ...) { opt <- attr(x, 'opt') if (!class(x$item) %in% c("numeric", "double", "integer", "Date")) { stop("'x' must be numeric or Date.", call. = FALSE) } if (!is.null(opt$vars)) { title <- opt$vars } else if (!is.null(opt$data)) { title <- opt$data } else { title <- "frequency table" } if (class(x$item) == "Date") { x <- as.Date(as.vector(x), origin = "1970-01-01") } else { x <- as.vector(x) } if (is.null(main)) { main <- paste("Histogram of", title) } hist(x, main = main, xlab = title, ...) } #' @noRd #' @exportMethod plot.frequency_tbl #' @export plot.frequency_tbl <- function(x, y, ...) { opt <- attr(x, 'opt') if (!is.null(opt$vars)) { title <- opt$vars } else { title <- "" } plot(x = x$item, y = x$count, ylab = "Count", xlab = title, ...) } #' @noRd #' @exportMethod as.vector.frequency_tbl #' @export as.vector.frequency_tbl <- function(x, mode = "any") { as.vector(rep(x$item, x$count), mode = mode) } #' @noRd #' @exportMethod format.frequency_tbl #' @export format.frequency_tbl <- function(x, digits = 1, ...) { opt <- attr(x, 'opt') if (opt$nmax.set == TRUE) { nmax <- opt$nmax } else { nmax <- getOption("max.print.freq", default = 15) } x <- x[1:nmax,] x$percent <- percent(x$percent, round = digits, force_zero = TRUE) x$cum_percent <- percent(x$cum_percent, round = digits, force_zero = TRUE) base::format.data.frame(x, ...) }