# ==================================================================== # # TITLE # # Antimicrobial Resistance (AMR) Data Analysis for R # # # # SOURCE # # https://github.com/msberends/AMR # # # # LICENCE # # (c) 2018-2022 Berends MS, Luz CF et al. # # Developed at the University of Groningen, the Netherlands, in # # collaboration with non-profit organisations Certe Medical # # Diagnostics & Advice, and University Medical Center Groningen. # # # # This R package is free software; you can freely use and distribute # # it for both personal and commercial purposes under the terms of the # # GNU General Public License version 2.0 (GNU GPL-2), as published by # # the Free Software Foundation. # # We created this package for both routine data analysis and academic # # research and it was publicly released in the hope that it will be # # useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. # # # # Visit our website for the full manual and a complete tutorial about # # how to conduct AMR data analysis: https://msberends.github.io/AMR/ # # ==================================================================== # #' Random MIC Values/Disk Zones/RSI Generation #' #' These functions can be used for generating random MIC values and disk diffusion diameters, for AMR data analysis practice. By providing a microorganism and antimicrobial agent, the generated results will reflect reality as much as possible. #' @param size desired size of the returned vector. If used in a [data.frame] call or `dplyr` verb, will get the current (group) size if left blank. #' @param mo any [character] that can be coerced to a valid microorganism code with [as.mo()] #' @param ab any [character] that can be coerced to a valid antimicrobial agent code with [as.ab()] #' @param prob_RSI a vector of length 3: the probabilities for "R" (1st value), "S" (2nd value) and "I" (3rd value) #' @param ... ignored, only in place to allow future extensions #' @details The base \R function [sample()] is used for generating values. #' #' Generated values are based on the EUCAST `r max(as.integer(gsub("[^0-9]", "", subset(rsi_translation, guideline %like% "EUCAST")$guideline)))` guideline as implemented in the [rsi_translation] data set. To create specific generated values per bug or drug, set the `mo` and/or `ab` argument. #' @return class `` for [random_mic()] (see [as.mic()]) and class `` for [random_disk()] (see [as.disk()]) #' @name random #' @rdname random #' @export #' @examples #' random_mic(25) #' random_disk(25) #' random_rsi(25) #' #' \donttest{ #' # make the random generation more realistic by setting a bug and/or drug: #' random_mic(25, "Klebsiella pneumoniae") # range 0.0625-64 #' random_mic(25, "Klebsiella pneumoniae", "meropenem") # range 0.0625-16 #' random_mic(25, "Streptococcus pneumoniae", "meropenem") # range 0.0625-4 #' #' random_disk(25, "Klebsiella pneumoniae") # range 8-50 #' random_disk(25, "Klebsiella pneumoniae", "ampicillin") # range 11-17 #' random_disk(25, "Streptococcus pneumoniae", "ampicillin") # range 12-27 #' } random_mic <- function(size = NULL, mo = NULL, ab = NULL, ...) { meet_criteria(size, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE, allow_NULL = TRUE) meet_criteria(mo, allow_class = "character", has_length = 1, allow_NULL = TRUE) meet_criteria(ab, allow_class = "character", has_length = 1, allow_NULL = TRUE) if (is.null(size)) { size <- NROW(get_current_data(arg_name = "size", call = -3)) } random_exec("MIC", size = size, mo = mo, ab = ab) } #' @rdname random #' @export random_disk <- function(size = NULL, mo = NULL, ab = NULL, ...) { meet_criteria(size, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE, allow_NULL = TRUE) meet_criteria(mo, allow_class = "character", has_length = 1, allow_NULL = TRUE) meet_criteria(ab, allow_class = "character", has_length = 1, allow_NULL = TRUE) if (is.null(size)) { size <- NROW(get_current_data(arg_name = "size", call = -3)) } random_exec("DISK", size = size, mo = mo, ab = ab) } #' @rdname random #' @export random_rsi <- function(size = NULL, prob_RSI = c(0.33, 0.33, 0.33), ...) { meet_criteria(size, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE, allow_NULL = TRUE) meet_criteria(prob_RSI, allow_class = c("numeric", "integer"), has_length = 3) if (is.null(size)) { size <- NROW(get_current_data(arg_name = "size", call = -3)) } sample(as.rsi(c("R", "S", "I")), size = size, replace = TRUE, prob = prob_RSI) } random_exec <- function(type, size, mo = NULL, ab = NULL) { df <- rsi_translation %pm>% pm_filter(guideline %like% "EUCAST") %pm>% pm_arrange(pm_desc(guideline)) %pm>% subset(guideline == max(guideline) & method == type) if (!is.null(mo)) { mo_coerced <- as.mo(mo) mo_include <- c( mo_coerced, as.mo(mo_genus(mo_coerced)), as.mo(mo_family(mo_coerced)), as.mo(mo_order(mo_coerced)) ) df_new <- df %pm>% subset(mo %in% mo_include) if (nrow(df_new) > 0) { df <- df_new } else { warning_("in `random_", tolower(type), "()`: no rows found that match mo '", mo, "', ignoring argument `mo`") } } if (!is.null(ab)) { ab_coerced <- as.ab(ab) df_new <- df %pm>% subset(ab %in% ab_coerced) if (nrow(df_new) > 0) { df <- df_new } else { warning_("in `random_", tolower(type), "()`: no rows found that match ab '", ab, "', ignoring argument `ab`") } } if (type == "MIC") { # set range mic_range <- c(0.001, 0.002, 0.005, 0.010, 0.025, 0.0625, 0.125, 0.250, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256) # get highest/lowest +/- random 1 to 3 higher factors of two max_range <- mic_range[min( length(mic_range), which(mic_range == max(df$breakpoint_R)) + sample(c(1:3), 1) )] min_range <- mic_range[max( 1, which(mic_range == min(df$breakpoint_S)) - sample(c(1:3), 1) )] mic_range_new <- mic_range[mic_range <= max_range & mic_range >= min_range] if (length(mic_range_new) == 0) { mic_range_new <- mic_range } out <- as.mic(sample(mic_range_new, size = size, replace = TRUE)) # 50% chance that lowest will get <= and highest will get >= if (stats::runif(1) > 0.5) { out[out == min(out)] <- paste0("<=", out[out == min(out)]) } if (stats::runif(1) > 0.5) { out[out == max(out)] <- paste0(">=", out[out == max(out)]) } return(out) } else if (type == "DISK") { set_range <- seq( from = as.integer(min(df$breakpoint_R) / 1.25), to = as.integer(max(df$breakpoint_S) * 1.25), by = 1 ) out <- sample(set_range, size = size, replace = TRUE) out[out < 6] <- sample(c(6:10), length(out[out < 6]), replace = TRUE) out[out > 50] <- sample(c(40:50), length(out[out > 50]), replace = TRUE) return(as.disk(out)) } }