These functions determine which items in a vector can be considered (the start of) a new episode. This can be used to determine clinical episodes for any epidemiological analysis. The get_episode() function returns the index number of the episode per group, while the is_new_episode() function returns TRUE for every new get_episode() index. Both absolute and relative episode determination are supported.
Usage
get_episode(x, episode_days = NULL, case_free_days = NULL, ...)
is_new_episode(x, episode_days = NULL, case_free_days = NULL, ...)Arguments
- x
- vector of dates (class - Dateor- POSIXt), will be sorted internally to determine episodes
- episode_days
- episode length in days to specify the time period after which a new episode begins, can also be less than a day or - Inf, see Details
- case_free_days
- (inter-epidemic) interval length in days after which a new episode will start, can also be less than a day or - Inf, see Details
- ...
- ignored, only in place to allow future extensions 
Details
Episodes can be determined in two ways: absolute and relative.
- Absolute - This method uses - episode_daysto define an episode length in days, after which a new episode will start. A common use case in AMR data analysis is microbial epidemiology: episodes of S. aureus bacteraemia in ICU patients for example. The episode length could then be 30 days, so that new S. aureus isolates after an ICU episode of 30 days will be considered a different (or new) episode.- Thus, this method counts since the start of the previous episode. 
- Relative - This method uses - case_free_daysto quantify the duration of case-free days (the inter-epidemic interval), after which a new episode will start. A common use case is infectious disease epidemiology: episodes of norovirus outbreaks in a hospital for example. The case-free period could then be 14 days, so that new norovirus cases after that time will be considered a different (or new) episode.- Thus, this methods counts since the last case in the previous episode. 
In a table:
| Date | Using episode_days = 7 | Using case_free_days = 7 | 
| 2023-01-01 | 1 | 1 | 
| 2023-01-02 | 1 | 1 | 
| 2023-01-05 | 1 | 1 | 
| 2023-01-08 | 2** | 1 | 
| 2023-02-21 | 3 | 2*** | 
| 2023-02-22 | 3 | 2 | 
| 2023-02-23 | 3 | 2 | 
| 2023-02-24 | 3 | 2 | 
| 2023-03-01 | 4 | 2 | 
** This marks the start of a new episode, because 8 January 2023 is more than 7 days since the start of the previous episode (1 January 2023). 
*** This marks the start of a new episode, because 21 January 2023 is more than 7 days since the last case in the previous episode (8 January 2023).
Either episode_days or case_free_days must be provided in the function.
Difference between get_episode() and is_new_episode()
The get_episode() function returns the index number of the episode, so all cases/patients/isolates in the first episode will have the number 1, all cases/patients/isolates in the second episode will have the number 2, etc.
The is_new_episode() function on the other hand, returns TRUE for every new get_episode() index.
To specify, when setting episode_days = 365 (using method 1 as explained above), this is how the two functions differ:
| patient | date | get_episode() | is_new_episode() | 
| A | 2019-01-01 | 1 | TRUE | 
| A | 2019-03-01 | 1 | FALSE | 
| A | 2021-01-01 | 2 | TRUE | 
| B | 2008-01-01 | 1 | TRUE | 
| B | 2008-01-01 | 1 | FALSE | 
| C | 2020-01-01 | 1 | TRUE | 
Other
The first_isolate() function is a wrapper around the is_new_episode() function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.
The dplyr package is not required for these functions to work, but these episode functions do support variable grouping and work conveniently inside dplyr verbs such as filter(), mutate() and summarise().
Examples
# difference between absolute and relative determination of episodes:
x <- data.frame(dates = as.Date(c(
  "2021-01-01",
  "2021-01-02",
  "2021-01-05",
  "2021-01-08",
  "2021-02-21",
  "2021-02-22",
  "2021-02-23",
  "2021-02-24",
  "2021-03-01",
  "2021-03-01"
)))
x$absolute <- get_episode(x$dates, episode_days = 7)
x$relative <- get_episode(x$dates, case_free_days = 7)
x
#>         dates absolute relative
#> 1  2021-01-01        1        1
#> 2  2021-01-02        1        1
#> 3  2021-01-05        1        1
#> 4  2021-01-08        2        1
#> 5  2021-02-21        3        2
#> 6  2021-02-22        3        2
#> 7  2021-02-23        3        2
#> 8  2021-02-24        3        2
#> 9  2021-03-01        4        2
#> 10 2021-03-01        4        2
# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 100), ]
get_episode(df$date, episode_days = 60) # indices
#>   [1] 46  4 39 28  8 29 19 40 34 38  7  7 10 28  7 38 41 10 20  5 18  1 22  5  6
#>  [26] 35 17 25 27 27  1 32 28 32 41 46 46 45 28 45 43 22 31  5  6 16 45 26  8 28
#>  [51] 45 12  4 19 24 42 16 35 44  9 26 11  1  2 32 45 32 39 21 36 19 37 14 29  3
#>  [76] 12 41 32 22 19 19 33 15 27 10 30 16 10 45  5 40 13 37 45 28  1 31 20 23 35
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#>   [1]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
#>  [13]  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
#>  [25]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
#>  [37] FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE
#>  [49] FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE
#>  [61] FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE
#>  [73]  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE
#>  [85] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
#>  [97] FALSE FALSE  TRUE FALSE
# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 1 × 46
#>   date       patient   age gender ward  mo           PEN   OXA   FLC   AMX  
#>   <date>     <chr>   <dbl> <chr>  <chr> <mo>         <sir> <sir> <sir> <sir>
#> 1 2002-07-23 F35553     51 M      ICU   B_STPHY_AURS   R     NA    S     R  
#> # ℹ 36 more variables: AMC <sir>, AMP <sir>, TZP <sir>, CZO <sir>, FEP <sir>,
#> #   CXM <sir>, FOX <sir>, CTX <sir>, CAZ <sir>, CRO <sir>, GEN <sir>,
#> #   TOB <sir>, AMK <sir>, KAN <sir>, TMP <sir>, SXT <sir>, NIT <sir>,
#> #   FOS <sir>, LNZ <sir>, CIP <sir>, MFX <sir>, VAN <sir>, TEC <sir>,
#> #   TCY <sir>, TGC <sir>, DOX <sir>, ERY <sir>, CLI <sir>, AZM <sir>,
#> #   IPM <sir>, MEM <sir>, MTR <sir>, CHL <sir>, COL <sir>, MUP <sir>, RIF <sir>
# the functions also work for less than a day, e.g. to include one per hour:
get_episode(
  c(
    Sys.time(),
    Sys.time() + 60 * 60
  ),
  episode_days = 1 / 24
)
#> [1] 1 2
# \donttest{
if (require("dplyr")) {
  # is_new_episode() can also be used in dplyr verbs to determine patient
  # episodes based on any (combination of) grouping variables:
  df %>%
    mutate(condition = sample(
      x = c("A", "B", "C"),
      size = 100,
      replace = TRUE
    )) %>%
    group_by(patient, condition) %>%
    mutate(new_episode = is_new_episode(date, 365)) %>%
    select(patient, date, condition, new_episode) %>%
    arrange(patient, condition, date)
}
#> # A tibble: 100 × 4
#> # Groups:   patient, condition [96]
#>    patient date       condition new_episode
#>    <chr>   <date>     <chr>     <lgl>      
#>  1 022060  2004-05-04 C         TRUE       
#>  2 036063  2010-01-28 A         TRUE       
#>  3 067927  2002-02-14 C         TRUE       
#>  4 069276  2015-06-18 A         TRUE       
#>  5 0C0688  2014-09-05 B         TRUE       
#>  6 0E2483  2007-04-06 A         TRUE       
#>  7 114570  2003-04-08 B         TRUE       
#>  8 122506  2007-08-10 B         TRUE       
#>  9 122506  2007-08-11 B         FALSE      
#> 10 13DF24  2011-08-14 A         TRUE       
#> # ℹ 90 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward, patient) %>%
    transmute(date,
      patient,
      new_index = get_episode(date, 60),
      new_logical = is_new_episode(date, 60)
    ) %>%
    arrange(patient, ward, date)
}
#> # A tibble: 100 × 5
#> # Groups:   ward, patient [90]
#>    ward     date       patient new_index new_logical
#>    <chr>    <date>     <chr>       <int> <lgl>      
#>  1 ICU      2004-05-04 022060          1 TRUE       
#>  2 Clinical 2010-01-28 036063          1 TRUE       
#>  3 ICU      2002-02-14 067927          1 TRUE       
#>  4 ICU      2015-06-18 069276          1 TRUE       
#>  5 Clinical 2014-09-05 0C0688          1 TRUE       
#>  6 Clinical 2007-04-06 0E2483          1 TRUE       
#>  7 ICU      2003-04-08 114570          1 TRUE       
#>  8 Clinical 2007-08-10 122506          1 TRUE       
#>  9 Clinical 2007-08-11 122506          1 FALSE      
#> 10 Clinical 2011-08-14 13DF24          1 TRUE       
#> # ℹ 90 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward) %>%
    summarise(
      n_patients = n_distinct(patient),
      n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
      n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
      n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
    )
}
#> # A tibble: 3 × 5
#>   ward       n_patients n_episodes_365 n_episodes_60 n_episodes_30
#>   <chr>           <int>          <int>         <int>         <int>
#> 1 Clinical           52             13            30            37
#> 2 ICU                30             10            24            27
#> 3 Outpatient          8              5             8             8
# grouping on patients and microorganisms leads to the same
# results as first_isolate() when using 'episode-based':
if (require("dplyr")) {
  x <- df %>%
    filter_first_isolate(
      include_unknown = TRUE,
      method = "episode-based"
    )
  y <- df %>%
    group_by(patient, mo) %>%
    filter(is_new_episode(date, 365)) %>%
    ungroup()
  identical(x, y)
}
#> [1] TRUE
# but is_new_episode() has a lot more flexibility than first_isolate(),
# since you can now group on anything that seems relevant:
if (require("dplyr")) {
  df %>%
    group_by(patient, mo, ward) %>%
    mutate(flag_episode = is_new_episode(date, 365)) %>%
    select(group_vars(.), flag_episode)
}
#> # A tibble: 100 × 4
#> # Groups:   patient, mo, ward [95]
#>    patient mo           ward       flag_episode
#>    <chr>   <mo>         <chr>      <lgl>       
#>  1 CFCF65  B_ACNTB_BMNN ICU        TRUE        
#>  2 CF9318  B_CMPYL_JEJN ICU        TRUE        
#>  3 D28985  B_ESCHR_COLI Outpatient TRUE        
#>  4 907215  B_STPHY_CONS ICU        TRUE        
#>  5 2FC253  B_ESCHR_COLI ICU        TRUE        
#>  6 582258  B_STPHY_CONS ICU        TRUE        
#>  7 179451  B_ESCHR_COLI ICU        TRUE        
#>  8 534816  B_STPHY_AURS Clinical   TRUE        
#>  9 B12887  B_ESCHR_COLI Clinical   TRUE        
#> 10 D43214  B_STPHY_HMNS Clinical   TRUE        
#> # ℹ 90 more rows
# }