# ==================================================================== # # TITLE # # Antimicrobial Resistance (AMR) Analysis # # # # SOURCE # # https://gitlab.com/msberends/AMR # # # # LICENCE # # (c) 2018-2020 Berends MS, Luz CF et al. # # # # This R package is free software; you can freely use and distribute # # it for both personal and commercial purposes under the terms of the # # GNU General Public License version 2.0 (GNU GPL-2), as published by # # the Free Software Foundation. # # # # We created this package for both routine data analysis and academic # # research and it was publicly released in the hope that it will be # # useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. # # Visit our website for more info: https://msberends.gitlab.io/AMR. # # ==================================================================== # dots2vars <- function(...) { # this function is to give more informative output about # variable names in count_* and proportion_* functions dots <- substitute(list(...)) paste(as.character(dots)[2:length(dots)], collapse = ", ") } rsi_calc <- function(..., ab_result, minimum = 0, as_percent = FALSE, only_all_tested = FALSE, only_count = FALSE) { stop_ifnot(is.numeric(minimum), "`minimum` must be numeric", call = -2) stop_ifnot(is.logical(as_percent), "`as_percent` must be logical", call = -2) stop_ifnot(is.logical(only_all_tested), "`only_all_tested` must be logical", call = -2) data_vars <- dots2vars(...) dots_df <- switch(1, ...) dots <- base::eval(base::substitute(base::alist(...))) stop_if(length(dots) == 0, "no variables selected", call = -2) stop_if("also_single_tested" %in% names(dots), "`also_single_tested` was replaced by `only_all_tested`.\n", "Please read Details in the help page (`?proportion`) as this may have a considerable impact on your analysis.", call = -2) ndots <- length(dots) if (is.data.frame(dots_df)) { # data.frame passed with other columns, like: example_isolates %>% proportion_S(AMC, GEN) dots <- as.character(dots) # remove first element, it's the data.frame if (length(dots) == 1) { dots <- character(0) } else { dots <- dots[2:length(dots)] } if (length(dots) == 0 | all(dots == "df")) { # for complete data.frames, like example_isolates %>% select(AMC, GEN) %>% proportion_S() # and the old rsi function, which has "df" as name of the first parameter x <- dots_df } else { dots_not_exist <- dots[!dots %in% colnames(dots_df)] stop_if(length(dots_not_exist) > 0, "column(s) not found: ", paste0("'", dots_not_exist, "'", collapse = ", "), call = -2) x <- dots_df[, dots, drop = FALSE] } } else if (ndots == 1) { # only 1 variable passed (can also be data.frame), like: proportion_S(example_isolates$AMC) and example_isolates$AMC %>% proportion_S() x <- dots_df } else { # multiple variables passed without pipe, like: proportion_S(example_isolates$AMC, example_isolates$GEN) x <- NULL try(x <- as.data.frame(dots), silent = TRUE) if (is.null(x)) { # support for example_isolates %>% group_by(hospital_id) %>% summarise(amox = susceptibility(GEN, AMX)) x <- as.data.frame(list(...)) } } if (is.null(x)) { warning("argument is NULL (check if columns exist): returning NA", call. = FALSE) return(NA) } print_warning <- FALSE ab_result <- as.rsi(ab_result) if (is.data.frame(x)) { rsi_integrity_check <- character(0) for (i in seq_len(ncol(x))) { # check integrity of columns: force rsi class if (!is.rsi(x %>% pull(i))) { rsi_integrity_check <- c(rsi_integrity_check, x %>% pull(i) %>% as.character()) x[, i] <- suppressWarnings(x %>% pull(i) %>% as.rsi()) # warning will be given later print_warning <- TRUE } } if (length(rsi_integrity_check) > 0) { # this will give a warning for invalid results, of all input columns (so only 1 warning) rsi_integrity_check <- as.rsi(rsi_integrity_check) } if (only_all_tested == TRUE) { # THE NUMBER OF ISOLATES WHERE *ALL* ABx ARE S/I/R x <- apply(X = as.data.frame(lapply(x, as.integer), stringsAsFactors = FALSE), MARGIN = 1, FUN = base::min) numerator <- sum(as.integer(x) %in% as.integer(ab_result), na.rm = TRUE) denominator <- length(x) - sum(is.na(x)) } else { # THE NUMBER OF ISOLATES WHERE *ANY* ABx IS S/I/R other_values <- base::setdiff(c(NA, levels(ab_result)), ab_result) other_values_filter <- base::apply(x, 1, function(y) { base::all(y %in% other_values) & base::any(is.na(y)) }) numerator <- sum(as.logical(by(x, seq_len(nrow(x)), function(row) any(unlist(row) %in% ab_result, na.rm = TRUE)))) denominator <- nrow(x[!other_values_filter, , drop = FALSE]) } } else { # x is not a data.frame if (!is.rsi(x)) { x <- as.rsi(x) print_warning <- TRUE } numerator <- sum(x %in% ab_result, na.rm = TRUE) denominator <- sum(x %in% levels(ab_result), na.rm = TRUE) } if (print_warning == TRUE) { warning("Increase speed by transforming to class on beforehand: your_data %>% mutate_if(is.rsi.eligible, as.rsi)", call. = FALSE) } if (only_count == TRUE) { return(numerator) } if (denominator < minimum) { if (data_vars != "") { data_vars <- paste(" for", data_vars) } warning("Introducing NA: only ", denominator, " results available", data_vars, " (`minimum` was set to ", minimum, ").", call. = FALSE) fraction <- NA } else { fraction <- numerator / denominator } if (as_percent == TRUE) { percentage(fraction, digits = 1) } else { fraction } } rsi_calc_df <- function(type, # "proportion", "count" or "both" data, translate_ab = "name", language = get_locale(), minimum = 30, as_percent = FALSE, combine_SI = TRUE, combine_IR = FALSE, combine_SI_missing = FALSE) { check_dataset_integrity() stop_ifnot(is.data.frame(data), "`data` must be a data.frame", call = -2) stop_if(any(dim(data) == 0), "`data` must contain rows and columns", call = -2) stop_ifnot(any(sapply(data, is.rsi), na.rm = TRUE), "no columns with class found. See ?as.rsi.", call = -2) if (isTRUE(combine_IR) & isTRUE(combine_SI_missing)) { combine_SI <- FALSE } stop_if(isTRUE(combine_SI) & isTRUE(combine_IR), "either `combine_SI` or `combine_IR` can be TRUE, not both", call = -2) stop_ifnot(is.numeric(minimum), "`minimum` must be numeric", call = -2) stop_ifnot(is.logical(as_percent), "`as_percent` must be logical", call = -2) translate_ab <- get_translate_ab(translate_ab) # select only groups and antibiotics if (has_groups(data)) { data_has_groups <- TRUE groups <- setdiff(names(get_groups(data)), ".rows") # get_groups is from poorman.R data <- data[, c(groups, colnames(data)[sapply(data, is.rsi)]), drop = FALSE] } else { data_has_groups <- FALSE data <- data[, colnames(data)[sapply(data, is.rsi)], drop = FALSE] } data <- as.data.frame(data, stringsAsFactors = FALSE) if (isTRUE(combine_SI) | isTRUE(combine_IR)) { for (i in seq_len(ncol(data))) { if (is.rsi(data[, i, drop = TRUE])) { data[, i] <- as.character(data[, i, drop = TRUE]) if (isTRUE(combine_SI)) { data[, i] <- gsub("(I|S)", "SI", data[, i, drop = TRUE]) } else if (isTRUE(combine_IR)) { data[, i] <- gsub("(I|R)", "IR", data[, i, drop = TRUE]) } } } } sum_it <- function(.data) { out <- data.frame(antibiotic = character(0), interpretation = character(0), value = double(0), isolates <- integer(0), stringsAsFactors = FALSE) if (data_has_groups) { group_values <- unique(.data[, which(colnames(.data) %in% groups), drop = FALSE]) rownames(group_values) <- NULL .data <- .data[, which(!colnames(.data) %in% groups), drop = FALSE] } for (i in seq_len(ncol(.data))) { values <- .data[, i, drop = TRUE] if (isTRUE(combine_SI)) { values <- factor(values, levels = c("SI", "R"), ordered = TRUE) } else if (isTRUE(combine_IR)) { values <- factor(values, levels = c("S", "IR"), ordered = TRUE) } else { values <- factor(values, levels = c("S", "I", "R"), ordered = TRUE) } col_results <- as.data.frame(as.matrix(table(values))) col_results$interpretation <- rownames(col_results) col_results$isolates <- col_results[, 1, drop = TRUE] if (NROW(col_results) > 0 && sum(col_results$isolates, na.rm = TRUE) > 0) { if (sum(col_results$isolates, na.rm = TRUE) >= minimum) { col_results$value <- col_results$isolates / sum(col_results$isolates, na.rm = TRUE) } else { col_results$value <- rep(NA_real_, NROW(col_results)) } out_new <- data.frame(antibiotic = ifelse(isFALSE(translate_ab), colnames(.data)[i], ab_property(colnames(.data)[i], property = translate_ab, language = language)), interpretation = col_results$interpretation, value = col_results$value, isolates = col_results$isolates, stringsAsFactors = FALSE) if (data_has_groups) { if (nrow(group_values) < nrow(out_new)) { # repeat group_values for the number of rows in out_new repeated <- rep(seq_len(nrow(group_values)), each = nrow(out_new) / nrow(group_values)) group_values <- group_values[repeated, , drop = FALSE] } out_new <- cbind(group_values, out_new) } out <- rbind(out, out_new) } } out } # support dplyr groups apply_group <- function(.data, fn, groups, ...) { grouped <- split(x = .data, f = lapply(groups, function(x, .data) as.factor(.data[, x]), .data)) res <- do.call(rbind, unname(lapply(grouped, fn, ...))) if (any(groups %in% colnames(res))) { class(res) <- c("grouped_data", class(res)) attr(res, "groups") <- groups[groups %in% colnames(res)] } res } if (data_has_groups) { out <- apply_group(data, "sum_it", groups) } else { out <- sum_it(data) } # apply factors for right sorting in interpretation if (isTRUE(combine_SI)) { out$interpretation <- factor(out$interpretation, levels = c("SI", "R"), ordered = TRUE) } else if (isTRUE(combine_IR)) { out$interpretation <- factor(out$interpretation, levels = c("S", "IR"), ordered = TRUE) } else { # don't use as.rsi() here, as it would add the class and we would like # the same data structure as output, regardless of input out$interpretation <- factor(out$interpretation, levels = c("S", "I", "R"), ordered = TRUE) } if (data_has_groups) { # ordering by the groups and two more: "antibiotic" and "interpretation" out <- ungroup(out[do.call("order", out[, seq_len(length(groups) + 2)]), ]) } else { out <- out[order(out$antibiotic, out$interpretation), ] } if (type == "proportion") { out <- subset(out, select = -c(isolates)) } else if (type == "count") { out$value <- out$isolates out <- subset(out, select = -c(isolates)) } rownames(out) <- NULL out } get_translate_ab <- function(translate_ab) { translate_ab <- as.character(translate_ab)[1L] if (translate_ab %in% c("TRUE", "official")) { return("name") } else if (translate_ab %in% c(NA_character_, "FALSE")) { return(FALSE) } else { translate_ab <- tolower(translate_ab) stop_ifnot(translate_ab %in% colnames(AMR::antibiotics), "invalid value for 'translate_ab', this must be a column name of the antibiotics data set\n", "or TRUE (equals 'name') or FALSE to not translate at all.", call = FALSE) translate_ab } }