Skip to contents

These functions determine which items in a vector can be considered (the start of) a new episode, based on the argument episode_days. This can be used to determine clinical episodes for any epidemiological analysis. The get_episode() function returns the index number of the episode per group, while the is_new_episode() function returns values TRUE/FALSE to indicate whether an item in a vector is the start of a new episode.

Usage

get_episode(x, episode_days, ...)

is_new_episode(x, episode_days, ...)

Arguments

x

vector of dates (class Date or POSIXt), will be sorted internally to determine episodes

episode_days

required episode length in days, can also be less than a day or Inf, see Details

...

ignored, only in place to allow future extensions

Value

  • get_episode(): a double vector

  • is_new_episode(): a logical vector

Details

Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least episode_days days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least episode_days days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.

The first_isolate() function is a wrapper around the is_new_episode() function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.

The dplyr package is not required for these functions to work, but these functions do support variable grouping and work conveniently inside dplyr verbs such as filter(), mutate() and summarise().

See also

Examples

# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 200), ]

get_episode(df$date, episode_days = 60) # indices
#>   [1] 10 13 12 30 16 44 61 40 31 51 24 14 27  1 35 14 52 12 11 24 50 35 49 60 10
#>  [26] 53  6  6 61 50  2  4 15 37  8 12 49 36 63 50 17 40 21 39  7 40 61 65 25 38
#>  [51] 14 32 32 63 17 29 24 23 45 42 39 30 37 57 49 29 59 14 38 15 14 58 42  4 11
#>  [76] 13 12  3 61  2 21 29 36 25 10 54 38 54 36 58 32 51 56 62 63 19 49 59 57 24
#> [101] 63 10 14 63 56 24 62 58 31 13 45 58 50 60 27 50 29 11 20 42  3 10 13 61  5
#> [126] 58 21 51 60 50 12 60 37 52  9 60 34 32 11 57 16 46 30 28 64 59 33 43 23 28
#> [151] 63 10 31 53 25 10 14 55 19 18 17 53 25 25  9 34 52 32 17 10 64 17 63 26 62
#> [176] 58 63 46 29 21 18 22 43 45 47 26 42  5 11 63 53 48 14  9 41 25  2 61 41 36
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#>   [1] FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE
#>  [13] FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#>  [25] FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE
#>  [37] FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE
#>  [49] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
#>  [61] FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
#>  [73] FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
#>  [85] FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE
#>  [97] FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
#> [109] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE
#> [121]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [133] FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
#> [145]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE
#> [157] FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE
#> [169]  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE
#> [181]  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE
#> [193] FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE

# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 2 × 46
#>   date       patient   age gender ward     mo           PEN   OXA   FLC   AMX  
#>   <date>     <chr>   <dbl> <chr>  <chr>    <mo>         <rsi> <rsi> <rsi> <rsi>
#> 1 2002-07-21 955940     82 F      Clinical B_PSDMN_AERG R     NA    NA    R    
#> 2 2002-06-23 798871     82 M      Clinical B_ENTRC_FCLS NA    NA    NA    NA   
#> # … with 36 more variables: AMC <rsi>, AMP <rsi>, TZP <rsi>, CZO <rsi>,
#> #   FEP <rsi>, CXM <rsi>, FOX <rsi>, CTX <rsi>, CAZ <rsi>, CRO <rsi>,
#> #   GEN <rsi>, TOB <rsi>, AMK <rsi>, KAN <rsi>, TMP <rsi>, SXT <rsi>,
#> #   NIT <rsi>, FOS <rsi>, LNZ <rsi>, CIP <rsi>, MFX <rsi>, VAN <rsi>,
#> #   TEC <rsi>, TCY <rsi>, TGC <rsi>, DOX <rsi>, ERY <rsi>, CLI <rsi>,
#> #   AZM <rsi>, IPM <rsi>, MEM <rsi>, MTR <rsi>, CHL <rsi>, COL <rsi>,
#> #   MUP <rsi>, RIF <rsi>

# the functions also work for less than a day, e.g. to include one per hour:
get_episode(c(
  Sys.time(),
  Sys.time() + 60 * 60
),
episode_days = 1 / 24
)
#> [1] 1 2

# \donttest{
if (require("dplyr")) {
  # is_new_episode() can also be used in dplyr verbs to determine patient
  # episodes based on any (combination of) grouping variables:
  df %>%
    mutate(condition = sample(
      x = c("A", "B", "C"),
      size = 200,
      replace = TRUE
    )) %>%
    group_by(condition) %>%
    mutate(new_episode = is_new_episode(date, 365)) %>%
    select(patient, date, condition, new_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   condition [3]
#>    patient date       condition new_episode
#>    <chr>   <date>     <chr>     <lgl>      
#>  1 419655  2004-02-21 A         FALSE      
#>  2 021648  2004-08-21 B         FALSE      
#>  3 D27410  2004-06-04 B         TRUE       
#>  4 E95747  2008-06-30 A         FALSE      
#>  5 838434  2005-06-20 A         FALSE      
#>  6 634DF2  2012-03-12 A         TRUE       
#>  7 872108  2016-12-27 B         FALSE      
#>  8 B26873  2011-01-09 A         FALSE      
#>  9 F462F5  2008-08-29 B         FALSE      
#> 10 545388  2013-12-05 B         FALSE      
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward, patient) %>%
    transmute(date,
      patient,
      new_index = get_episode(date, 60),
      new_logical = is_new_episode(date, 60)
    )
}
#> # A tibble: 200 × 5
#> # Groups:   ward, patient [186]
#>    ward       date       patient new_index new_logical
#>    <chr>      <date>     <chr>       <dbl> <lgl>      
#>  1 ICU        2004-02-21 419655          1 TRUE       
#>  2 Clinical   2004-08-21 021648          1 TRUE       
#>  3 Outpatient 2004-06-04 D27410          1 TRUE       
#>  4 Clinical   2008-06-30 E95747          1 TRUE       
#>  5 Clinical   2005-06-20 838434          1 TRUE       
#>  6 ICU        2012-03-12 634DF2          1 TRUE       
#>  7 Clinical   2016-12-27 872108          1 TRUE       
#>  8 Clinical   2011-01-09 B26873          1 TRUE       
#>  9 Clinical   2008-08-29 F462F5          1 TRUE       
#> 10 Clinical   2013-12-05 545388          2 TRUE       
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward) %>%
    summarise(
      n_patients = n_distinct(patient),
      n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
      n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
      n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
    )
}
#> # A tibble: 3 × 5
#>   ward       n_patients n_episodes_365 n_episodes_60 n_episodes_30
#>   <chr>           <int>          <int>         <int>         <int>
#> 1 Clinical          131             13            53            75
#> 2 ICU                44             10            27            36
#> 3 Outpatient         11              7            10            10
if (require("dplyr")) {

  # grouping on patients and microorganisms leads to the same
  # results as first_isolate() when using 'episode-based':
  x <- df %>%
    filter_first_isolate(
      include_unknown = TRUE,
      method = "episode-based"
    )

  y <- df %>%
    group_by(patient, mo) %>%
    filter(is_new_episode(date, 365)) %>%
    ungroup()

  identical(x, y)
}
#> Including isolates from ICU.
#> [1] FALSE
if (require("dplyr")) {

  # but is_new_episode() has a lot more flexibility than first_isolate(),
  # since you can now group on anything that seems relevant:
  df %>%
    group_by(patient, mo, ward) %>%
    mutate(flag_episode = is_new_episode(date, 365)) %>%
    select(group_vars(.), flag_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   patient, mo, ward [193]
#>    patient mo           ward       flag_episode
#>    <chr>   <mo>         <chr>      <lgl>       
#>  1 419655  B_STRPT_PNMN ICU        TRUE        
#>  2 021648  B_ESCHR_COLI Clinical   TRUE        
#>  3 D27410  B_BCTRD_FRGL Outpatient TRUE        
#>  4 E95747  B_KLBSL_PNMN Clinical   TRUE        
#>  5 838434  B_STPHY_CONS Clinical   TRUE        
#>  6 634DF2  B_STRPT_PNMN ICU        TRUE        
#>  7 872108  B_ESCHR_COLI Clinical   TRUE        
#>  8 B26873  B_ESCHR_COLI Clinical   TRUE        
#>  9 F462F5  B_STRPT_PNMN Clinical   TRUE        
#> 10 545388  B_STPHY_CPTS Clinical   TRUE        
#> # … with 190 more rows
# }