These functions determine which items in a vector can be considered (the start of) a new episode. This can be used to determine clinical episodes for any epidemiological analysis. The get_episode()
function returns the index number of the episode per group, while the is_new_episode()
function returns TRUE
for every new get_episode()
index. Both absolute and relative episode determination are supported.
Usage
get_episode(x, episode_days = NULL, case_free_days = NULL, ...)
is_new_episode(x, episode_days = NULL, case_free_days = NULL, ...)
Arguments
- x
vector of dates (class
Date
orPOSIXt
), will be sorted internally to determine episodes- episode_days
episode length in days to specify the time period after which a new episode begins, can also be less than a day or
Inf
, see Details- case_free_days
(inter-epidemic) interval length in days after which a new episode will start, can also be less than a day or
Inf
, see Details- ...
ignored, only in place to allow future extensions
Details
Episodes can be determined in two ways: absolute and relative.
Absolute
This method uses
episode_days
to define an episode length in days, after which a new episode will start. A common use case in AMR data analysis is microbial epidemiology: episodes of S. aureus bacteraemia in ICU patients for example. The episode length could then be 30 days, so that new S. aureus isolates after an ICU episode of 30 days will be considered a different (or new) episode.Thus, this method counts since the start of the previous episode.
Relative
This method uses
case_free_days
to quantify the duration of case-free days (the inter-epidemic interval), after which a new episode will start. A common use case is infectious disease epidemiology: episodes of norovirus outbreaks in a hospital for example. The case-free period could then be 14 days, so that new norovirus cases after that time will be considered a different (or new) episode.Thus, this methods counts since the last case in the previous episode.
In a table:
Date | Using episode_days = 7 | Using case_free_days = 7 |
2023-01-01 | 1 | 1 |
2023-01-02 | 1 | 1 |
2023-01-05 | 1 | 1 |
2023-01-08 | 2** | 1 |
2023-02-21 | 3 | 2*** |
2023-02-22 | 3 | 2 |
2023-02-23 | 3 | 2 |
2023-02-24 | 3 | 2 |
2023-03-01 | 4 | 2 |
** This marks the start of a new episode, because 8 January 2023 is more than 7 days since the start of the previous episode (1 January 2023).
*** This marks the start of a new episode, because 21 January 2023 is more than 7 days since the last case in the previous episode (8 January 2023).
Either episode_days
or case_free_days
must be provided in the function.
Difference between get_episode()
and is_new_episode()
The get_episode()
function returns the index number of the episode, so all cases/patients/isolates in the first episode will have the number 1, all cases/patients/isolates in the second episode will have the number 2, etc.
The is_new_episode()
function on the other hand, returns TRUE
for every new get_episode()
index.
To specify, when setting episode_days = 365
(using method 1 as explained above), this is how the two functions differ:
patient | date | get_episode() | is_new_episode() |
A | 2019-01-01 | 1 | TRUE |
A | 2019-03-01 | 1 | FALSE |
A | 2021-01-01 | 2 | TRUE |
B | 2008-01-01 | 1 | TRUE |
B | 2008-01-01 | 1 | FALSE |
C | 2020-01-01 | 1 | TRUE |
Other
The first_isolate()
function is a wrapper around the is_new_episode()
function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.
The dplyr
package is not required for these functions to work, but these episode functions do support variable grouping and work conveniently inside dplyr
verbs such as filter()
, mutate()
and summarise()
.
Examples
# difference between absolute and relative determination of episodes:
x <- data.frame(dates = as.Date(c(
"2021-01-01",
"2021-01-02",
"2021-01-05",
"2021-01-08",
"2021-02-21",
"2021-02-22",
"2021-02-23",
"2021-02-24",
"2021-03-01",
"2021-03-01"
)))
x$absolute <- get_episode(x$dates, episode_days = 7)
x$relative <- get_episode(x$dates, case_free_days = 7)
x
#> dates absolute relative
#> 1 2021-01-01 1 1
#> 2 2021-01-02 1 1
#> 3 2021-01-05 1 1
#> 4 2021-01-08 2 1
#> 5 2021-02-21 3 2
#> 6 2021-02-22 3 2
#> 7 2021-02-23 3 2
#> 8 2021-02-24 3 2
#> 9 2021-03-01 4 2
#> 10 2021-03-01 4 2
# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 100), ]
get_episode(df$date, episode_days = 60) # indices
#> [1] 12 26 31 42 7 19 34 21 7 32 12 35 21 24 9 48 10 22 33 20 2 19 11 43 30
#> [26] 32 14 46 35 13 43 47 27 3 3 4 33 18 15 22 25 45 23 37 39 7 28 7 1 25
#> [51] 1 24 42 40 33 18 41 23 5 14 44 48 48 40 26 7 1 16 13 13 6 27 18 45 7
#> [76] 30 36 18 18 45 39 16 9 45 31 47 48 3 4 46 5 18 17 9 38 39 29 28 9 8
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#> [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE
#> [13] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
#> [25] TRUE FALSE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE TRUE
#> [37] FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE
#> [49] TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE TRUE FALSE
#> [61] TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE
#> [73] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE
#> [97] TRUE FALSE FALSE TRUE
# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 3 × 46
#> date patient age gender ward mo PEN OXA FLC AMX
#> <date> <chr> <dbl> <chr> <chr> <mo> <sir> <sir> <sir> <sir>
#> 1 2002-10-22 718963 82 M ICU B_STPHY_EPDR R NA R R
#> 2 2002-12-14 144280 76 F Clinical B_STPHY_AURS R NA S R
#> 3 2002-10-18 E55128 57 F ICU B_STPHY_AURS R NA S R
#> # ℹ 36 more variables: AMC <sir>, AMP <sir>, TZP <sir>, CZO <sir>, FEP <sir>,
#> # CXM <sir>, FOX <sir>, CTX <sir>, CAZ <sir>, CRO <sir>, GEN <sir>,
#> # TOB <sir>, AMK <sir>, KAN <sir>, TMP <sir>, SXT <sir>, NIT <sir>,
#> # FOS <sir>, LNZ <sir>, CIP <sir>, MFX <sir>, VAN <sir>, TEC <sir>,
#> # TCY <sir>, TGC <sir>, DOX <sir>, ERY <sir>, CLI <sir>, AZM <sir>,
#> # IPM <sir>, MEM <sir>, MTR <sir>, CHL <sir>, COL <sir>, MUP <sir>, RIF <sir>
# the functions also work for less than a day, e.g. to include one per hour:
get_episode(
c(
Sys.time(),
Sys.time() + 60 * 60
),
episode_days = 1 / 24
)
#> [1] 1 2
# \donttest{
if (require("dplyr")) {
# is_new_episode() can also be used in dplyr verbs to determine patient
# episodes based on any (combination of) grouping variables:
df %>%
mutate(condition = sample(
x = c("A", "B", "C"),
size = 100,
replace = TRUE
)) %>%
group_by(patient, condition) %>%
mutate(new_episode = is_new_episode(date, 365)) %>%
select(patient, date, condition, new_episode) %>%
arrange(patient, condition, date)
}
#> # A tibble: 100 × 4
#> # Groups: patient, condition [98]
#> patient date condition new_episode
#> <chr> <date> <chr> <lgl>
#> 1 006827 2009-07-24 B TRUE
#> 2 006827 2009-07-24 B FALSE
#> 3 022060 2004-05-04 B TRUE
#> 4 023456 2012-11-24 B TRUE
#> 5 082413 2002-06-04 A TRUE
#> 6 083080 2010-02-25 B TRUE
#> 7 097186 2015-10-28 C TRUE
#> 8 0D7D34 2011-03-16 A TRUE
#> 9 0D7D34 2011-03-19 C TRUE
#> 10 0DBB93 2009-05-08 B TRUE
#> # ℹ 90 more rows
if (require("dplyr")) {
df %>%
group_by(ward, patient) %>%
transmute(date,
patient,
new_index = get_episode(date, 60),
new_logical = is_new_episode(date, 60)
) %>%
arrange(patient, ward, date)
}
#> # A tibble: 100 × 5
#> # Groups: ward, patient [93]
#> ward date patient new_index new_logical
#> <chr> <date> <chr> <int> <lgl>
#> 1 Clinical 2009-07-24 006827 1 TRUE
#> 2 Clinical 2009-07-24 006827 1 FALSE
#> 3 ICU 2004-05-04 022060 1 TRUE
#> 4 Clinical 2012-11-24 023456 1 TRUE
#> 5 ICU 2002-06-04 082413 1 TRUE
#> 6 Clinical 2010-02-25 083080 1 TRUE
#> 7 Clinical 2015-10-28 097186 1 TRUE
#> 8 ICU 2011-03-16 0D7D34 1 TRUE
#> 9 ICU 2011-03-19 0D7D34 1 FALSE
#> 10 Clinical 2009-05-08 0DBB93 1 TRUE
#> # ℹ 90 more rows
if (require("dplyr")) {
df %>%
group_by(ward) %>%
summarise(
n_patients = n_distinct(patient),
n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
)
}
#> # A tibble: 3 × 5
#> ward n_patients n_episodes_365 n_episodes_60 n_episodes_30
#> <chr> <int> <int> <int> <int>
#> 1 Clinical 64 13 37 46
#> 2 ICU 25 10 18 21
#> 3 Outpatient 4 4 4 4
# grouping on patients and microorganisms leads to the same
# results as first_isolate() when using 'episode-based':
if (require("dplyr")) {
x <- df %>%
filter_first_isolate(
include_unknown = TRUE,
method = "episode-based"
)
y <- df %>%
group_by(patient, mo) %>%
filter(is_new_episode(date, 365)) %>%
ungroup()
identical(x, y)
}
#> [1] TRUE
# but is_new_episode() has a lot more flexibility than first_isolate(),
# since you can now group on anything that seems relevant:
if (require("dplyr")) {
df %>%
group_by(patient, mo, ward) %>%
mutate(flag_episode = is_new_episode(date, 365)) %>%
select(group_vars(.), flag_episode)
}
#> # A tibble: 100 × 4
#> # Groups: patient, mo, ward [94]
#> patient mo ward flag_episode
#> <chr> <mo> <chr> <lgl>
#> 1 A90606 B_STRPT_PNMN Clinical TRUE
#> 2 D19627 B_ESCHR_COLI Clinical TRUE
#> 3 826357 B_STRPT_PNMN Clinical TRUE
#> 4 E53416 B_STPHY_AURS ICU TRUE
#> 5 394107 B_STPHY_CONS ICU TRUE
#> 6 183220 B_STPHY_CONS Clinical TRUE
#> 7 023456 B_PROTS_MRBL Clinical TRUE
#> 8 0DBB93 B_ESCHR_COLI Clinical TRUE
#> 9 419655 B_STRPT_PNMN ICU TRUE
#> 10 A95779 B_STPHY_AURS Clinical TRUE
#> # ℹ 90 more rows
# }