<!DOCTYPE html> <!-- Generated by pkgdown: do not edit by hand --><html lang="en"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><meta charset="utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge"><meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"><meta name="description" content="Performs a principal component analysis (PCA) based on a data set with automatic determination for afterwards plotting the groups and labels, and automatic filtering on only suitable (i.e. non-empty and numeric) variables."><title>Principal Component Analysis (for AMR) — pca • AMR (for R)</title><!-- favicons --><link rel="icon" type="image/png" sizes="16x16" href="../favicon-16x16.png"><link rel="icon" type="image/png" sizes="32x32" href="../favicon-32x32.png"><link rel="apple-touch-icon" type="image/png" sizes="180x180" href="../apple-touch-icon.png"><link rel="apple-touch-icon" type="image/png" sizes="120x120" href="../apple-touch-icon-120x120.png"><link rel="apple-touch-icon" type="image/png" sizes="76x76" href="../apple-touch-icon-76x76.png"><link rel="apple-touch-icon" type="image/png" sizes="60x60" href="../apple-touch-icon-60x60.png"><script src="../deps/jquery-3.6.0/jquery-3.6.0.min.js"></script><meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"><link href="../deps/bootstrap-5.2.2/bootstrap.min.css" rel="stylesheet"><script src="../deps/bootstrap-5.2.2/bootstrap.bundle.min.js"></script><link href="../deps/Fira_Code-0.4.5/font.css" rel="stylesheet"><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous"><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous"><!-- bootstrap-toc --><script src="https://cdn.jsdelivr.net/gh/afeld/bootstrap-toc@v1.0.1/dist/bootstrap-toc.min.js" integrity="sha256-4veVQbu7//Lk5TSmc7YV48MxtMy98e26cf5MrgZYnwo=" crossorigin="anonymous"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><!-- search --><script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/6.4.6/fuse.js" integrity="sha512-zv6Ywkjyktsohkbp9bb45V6tEMoWhzFzXis+LrMehmJZZSys19Yxf1dopHx7WzIKxr5tK2dVcYmaCk2uqdjF4A==" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/autocomplete.js/0.38.0/autocomplete.jquery.min.js" integrity="sha512-GU9ayf+66Xx2TmpxqJpliWbT5PiGYxpaG8rfnBEk1LL8l1KGkRShhngwdXK1UgqhAzWpZHSiYPc09/NwDQIGyg==" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/mark.min.js" integrity="sha512-5CYOlHXGh6QpOFA/TeTylKLWfB3ftPsde7AnmhuitiTX4K5SqCLBeKro6sPS8ilsz1Q4NRx3v8Ko2IBiszzdww==" crossorigin="anonymous"></script><!-- pkgdown --><script src="../pkgdown.js"></script><link href="../extra.css" rel="stylesheet"><script src="../extra.js"></script><meta property="og:title" content="Principal Component Analysis (for AMR) — pca"><meta property="og:description" content="Performs a principal component analysis (PCA) based on a data set with automatic determination for afterwards plotting the groups and labels, and automatic filtering on only suitable (i.e. non-empty and numeric) variables."><meta property="og:image" content="https://msberends.github.io/AMR/logo.svg"><meta name="twitter:card" content="summary_large_image"><meta name="twitter:creator" content="@msberends"><meta name="twitter:site" content="@msberends"><!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]> <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> <script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> <![endif]--></head><body> <a href="#main" class="visually-hidden-focusable">Skip to contents</a> <nav class="navbar fixed-top navbar-dark navbar-expand-lg bg-primary"><div class="container"> <a class="navbar-brand me-2" href="../index.html">AMR (for R)</a> <small class="nav-text text-muted me-auto" data-bs-toggle="tooltip" data-bs-placement="bottom" title="">2.0.0.9003</small> <button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#navbar" aria-controls="navbar" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div id="navbar" class="collapse navbar-collapse ms-3"> <ul class="navbar-nav me-auto"><li class="nav-item"> <a class="nav-link" href="../index.html"> <span class="fa fa-home"></span> Home </a> </li> <li class="nav-item dropdown"> <a href="#" class="nav-link dropdown-toggle" data-bs-toggle="dropdown" role="button" aria-expanded="false" aria-haspopup="true" id="dropdown--how-to"> <span class="fa fa-question-circle"></span> How to </a> <div class="dropdown-menu" aria-labelledby="dropdown--how-to"> <a class="dropdown-item" href="../articles/AMR.html"> <span class="fa fa-directions"></span> Conduct AMR Analysis </a> <a class="dropdown-item" href="../reference/antibiogram.html"> <span class="fa fa-file-prescription"></span> Generate Antibiogram (Trad./Syndromic/WISCA) </a> <a class="dropdown-item" href="../articles/resistance_predict.html"> <span class="fa fa-dice"></span> Predict Antimicrobial Resistance </a> <a class="dropdown-item" href="../articles/datasets.html"> <span class="fa fa-database"></span> Download Data Sets for Own Use </a> <a class="dropdown-item" href="../reference/AMR-options.html"> <span class="fa fa-gear"></span> Set User- Or Team-specific Package Settings </a> <a class="dropdown-item" href="../articles/PCA.html"> <span class="fa fa-compress"></span> Conduct Principal Component Analysis for AMR </a> <a class="dropdown-item" href="../articles/MDR.html"> <span class="fa fa-skull-crossbones"></span> Determine Multi-Drug Resistance (MDR) </a> <a class="dropdown-item" href="../articles/WHONET.html"> <span class="fa fa-globe-americas"></span> Work with WHONET Data </a> <a class="dropdown-item" href="../articles/SPSS.html"> <span class="fa fa-file-upload"></span> Import Data From SPSS/SAS/Stata </a> <a class="dropdown-item" href="../articles/EUCAST.html"> <span class="fa fa-exchange-alt"></span> Apply Eucast Rules </a> <a class="dropdown-item" href="../reference/mo_property.html"> <span class="fa fa-bug"></span> Get Taxonomy of a Microorganism </a> <a class="dropdown-item" href="../reference/ab_property.html"> <span class="fa fa-capsules"></span> Get Properties of an Antibiotic Drug </a> <a class="dropdown-item" href="../reference/av_property.html"> <span class="fa fa-capsules"></span> Get Properties of an Antiviral Drug </a> </div> </li> <li class="active nav-item"> <a class="nav-link" href="../reference/index.html"> <span class="fa fa-book-open"></span> Manual </a> </li> <li class="nav-item"> <a class="nav-link" href="../authors.html"> <span class="fa fa-users"></span> Authors </a> </li> <li class="nav-item"> <a class="nav-link" href="../news/index.html"> <span class="far fa far fa-newspaper"></span> Changelog </a> </li> </ul><form class="form-inline my-2 my-lg-0" role="search"> <input type="search" class="form-control me-sm-2" aria-label="Toggle navigation" name="search-input" data-search-index="../search.json" id="search-input" placeholder="Search for" autocomplete="off"></form> <ul class="navbar-nav"><li class="nav-item"> <a class="external-link nav-link" href="https://github.com/msberends/AMR"> <span class="fab fa fab fa-github"></span> Source Code </a> </li> </ul></div> </div> </nav><div class="container template-reference-topic"> <div class="row"> <main id="main" class="col-md-9"><div class="page-header"> <img src="../logo.svg" class="logo" alt=""><h1>Principal Component Analysis (for AMR)</h1> <small class="dont-index">Source: <a href="https://github.com/msberends/AMR/blob/HEAD/R/pca.R" class="external-link"><code>R/pca.R</code></a></small> <div class="d-none name"><code>pca.Rd</code></div> </div> <div class="ref-description section level2"> <p>Performs a principal component analysis (PCA) based on a data set with automatic determination for afterwards plotting the groups and labels, and automatic filtering on only suitable (i.e. non-empty and numeric) variables.</p> </div> <div class="section level2"> <h2 id="ref-usage">Usage<a class="anchor" aria-label="anchor" href="#ref-usage"></a></h2> <div class="sourceCode"><pre class="sourceCode r"><code><span><span class="fu">pca</span><span class="op">(</span></span> <span> <span class="va">x</span>,</span> <span> <span class="va">...</span>,</span> <span> retx <span class="op">=</span> <span class="cn">TRUE</span>,</span> <span> center <span class="op">=</span> <span class="cn">TRUE</span>,</span> <span> scale. <span class="op">=</span> <span class="cn">TRUE</span>,</span> <span> tol <span class="op">=</span> <span class="cn">NULL</span>,</span> <span> rank. <span class="op">=</span> <span class="cn">NULL</span></span> <span><span class="op">)</span></span></code></pre></div> </div> <div class="section level2"> <h2 id="arguments">Arguments<a class="anchor" aria-label="anchor" href="#arguments"></a></h2> <dl><dt>x</dt> <dd><p>a <a href="https://rdrr.io/r/base/data.frame.html" class="external-link">data.frame</a> containing <a href="https://rdrr.io/r/base/numeric.html" class="external-link">numeric</a> columns</p></dd> <dt>...</dt> <dd><p>columns of <code>x</code> to be selected for PCA, can be unquoted since it supports quasiquotation.</p></dd> <dt>retx</dt> <dd><p>a logical value indicating whether the rotated variables should be returned.</p></dd> <dt>center</dt> <dd><p>a logical value indicating whether the variables should be shifted to be zero centered. Alternately, a vector of length equal the number of columns of <code>x</code> can be supplied. The value is passed to <code>scale</code>.</p></dd> <dt>scale.</dt> <dd><p>a logical value indicating whether the variables should be scaled to have unit variance before the analysis takes place. The default is <code>FALSE</code> for consistency with S, but in general scaling is advisable. Alternatively, a vector of length equal the number of columns of <code>x</code> can be supplied. The value is passed to <code><a href="https://rdrr.io/r/base/scale.html" class="external-link">scale</a></code>.</p></dd> <dt>tol</dt> <dd><p>a value indicating the magnitude below which components should be omitted. (Components are omitted if their standard deviations are less than or equal to <code>tol</code> times the standard deviation of the first component.) With the default null setting, no components are omitted (unless <code>rank.</code> is specified less than <code>min(dim(x))</code>.). Other settings for tol could be <code>tol = 0</code> or <code>tol = sqrt(.Machine$double.eps)</code>, which would omit essentially constant components.</p></dd> <dt>rank.</dt> <dd><p>optionally, a number specifying the maximal rank, i.e., maximal number of principal components to be used. Can be set as alternative or in addition to <code>tol</code>, useful notably when the desired rank is considerably smaller than the dimensions of the matrix.</p></dd> </dl></div> <div class="section level2"> <h2 id="value">Value<a class="anchor" aria-label="anchor" href="#value"></a></h2> <p>An object of classes pca and <a href="https://rdrr.io/r/stats/prcomp.html" class="external-link">prcomp</a></p> </div> <div class="section level2"> <h2 id="details">Details<a class="anchor" aria-label="anchor" href="#details"></a></h2> <p>The <code>pca()</code> function takes a <a href="https://rdrr.io/r/base/data.frame.html" class="external-link">data.frame</a> as input and performs the actual PCA with the <span style="R">R</span> function <code><a href="https://rdrr.io/r/stats/prcomp.html" class="external-link">prcomp()</a></code>.</p> <p>The result of the <code>pca()</code> function is a <a href="https://rdrr.io/r/stats/prcomp.html" class="external-link">prcomp</a> object, with an additional attribute <code>non_numeric_cols</code> which is a vector with the column names of all columns that do not contain <a href="https://rdrr.io/r/base/numeric.html" class="external-link">numeric</a> values. These are probably the groups and labels, and will be used by <code><a href="ggplot_pca.html">ggplot_pca()</a></code>.</p> </div> <div class="section level2"> <h2 id="ref-examples">Examples<a class="anchor" aria-label="anchor" href="#ref-examples"></a></h2> <div class="sourceCode"><pre class="sourceCode r"><code><span class="r-in"><span><span class="co"># `example_isolates` is a data set available in the AMR package.</span></span></span> <span class="r-in"><span><span class="co"># See ?example_isolates.</span></span></span> <span class="r-in"><span></span></span> <span class="r-in"><span><span class="co"># \donttest{</span></span></span> <span class="r-in"><span><span class="kw">if</span> <span class="op">(</span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">require</a></span><span class="op">(</span><span class="st"><a href="https://dplyr.tidyverse.org" class="external-link">"dplyr"</a></span><span class="op">)</span><span class="op">)</span> <span class="op">{</span></span></span> <span class="r-in"><span> <span class="co"># calculate the resistance per group first</span></span></span> <span class="r-in"><span> <span class="va">resistance_data</span> <span class="op"><-</span> <span class="va">example_isolates</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%>%</a></span></span></span> <span class="r-in"><span> <span class="fu"><a href="https://dplyr.tidyverse.org/reference/group_by.html" class="external-link">group_by</a></span><span class="op">(</span></span></span> <span class="r-in"><span> order <span class="op">=</span> <span class="fu"><a href="mo_property.html">mo_order</a></span><span class="op">(</span><span class="va">mo</span><span class="op">)</span>, <span class="co"># group on anything, like order</span></span></span> <span class="r-in"><span> genus <span class="op">=</span> <span class="fu"><a href="mo_property.html">mo_genus</a></span><span class="op">(</span><span class="va">mo</span><span class="op">)</span></span></span> <span class="r-in"><span> <span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%>%</a></span> <span class="co"># and genus as we do here;</span></span></span> <span class="r-in"><span> <span class="fu"><a href="https://dplyr.tidyverse.org/reference/filter.html" class="external-link">filter</a></span><span class="op">(</span><span class="fu"><a href="https://dplyr.tidyverse.org/reference/context.html" class="external-link">n</a></span><span class="op">(</span><span class="op">)</span> <span class="op">>=</span> <span class="fl">30</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%>%</a></span> <span class="co"># filter on only 30 results per group</span></span></span> <span class="r-in"><span> <span class="fu"><a href="https://dplyr.tidyverse.org/reference/summarise_all.html" class="external-link">summarise_if</a></span><span class="op">(</span><span class="va">is.sir</span>, <span class="va">resistance</span><span class="op">)</span> <span class="co"># then get resistance of all drugs</span></span></span> <span class="r-in"><span></span></span> <span class="r-in"><span> <span class="co"># now conduct PCA for certain antimicrobial drugs</span></span></span> <span class="r-in"><span> <span class="va">pca_result</span> <span class="op"><-</span> <span class="va">resistance_data</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%>%</a></span></span></span> <span class="r-in"><span> <span class="fu">pca</span><span class="op">(</span><span class="va">AMC</span>, <span class="va">CXM</span>, <span class="va">CTX</span>, <span class="va">CAZ</span>, <span class="va">GEN</span>, <span class="va">TOB</span>, <span class="va">TMP</span>, <span class="va">SXT</span><span class="op">)</span></span></span> <span class="r-in"><span></span></span> <span class="r-in"><span> <span class="va">pca_result</span></span></span> <span class="r-in"><span> <span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">pca_result</span><span class="op">)</span></span></span> <span class="r-in"><span></span></span> <span class="r-in"><span> <span class="co"># old base R plotting method:</span></span></span> <span class="r-in"><span> <span class="fu"><a href="https://rdrr.io/r/stats/biplot.html" class="external-link">biplot</a></span><span class="op">(</span><span class="va">pca_result</span><span class="op">)</span></span></span> <span class="r-in"><span> <span class="co"># new ggplot2 plotting method using this package:</span></span></span> <span class="r-in"><span> <span class="kw">if</span> <span class="op">(</span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">require</a></span><span class="op">(</span><span class="st"><a href="https://ggplot2.tidyverse.org" class="external-link">"ggplot2"</a></span><span class="op">)</span><span class="op">)</span> <span class="op">{</span></span></span> <span class="r-in"><span> <span class="fu"><a href="ggplot_pca.html">ggplot_pca</a></span><span class="op">(</span><span class="va">pca_result</span><span class="op">)</span></span></span> <span class="r-in"><span></span></span> <span class="r-in"><span> <span class="fu"><a href="ggplot_pca.html">ggplot_pca</a></span><span class="op">(</span><span class="va">pca_result</span><span class="op">)</span> <span class="op">+</span></span></span> <span class="r-in"><span> <span class="fu"><a href="https://ggplot2.tidyverse.org/reference/scale_viridis.html" class="external-link">scale_colour_viridis_d</a></span><span class="op">(</span><span class="op">)</span> <span class="op">+</span></span></span> <span class="r-in"><span> <span class="fu"><a href="https://ggplot2.tidyverse.org/reference/labs.html" class="external-link">labs</a></span><span class="op">(</span>title <span class="op">=</span> <span class="st">"Title here"</span><span class="op">)</span></span></span> <span class="r-in"><span> <span class="op">}</span></span></span> <span class="r-in"><span><span class="op">}</span></span></span> <span class="r-wrn co"><span class="r-pr">#></span> <span class="warning">Warning: </span>There were 73 warnings in `summarise()`.</span> <span class="r-wrn co"><span class="r-pr">#></span> The first warning was:</span> <span class="r-wrn co"><span class="r-pr">#></span> <span style="color: #00BBBB;">ℹ</span> In argument: `PEN = (function (..., minimum = 30, as_percent = FALSE,</span> <span class="r-wrn co"><span class="r-pr">#></span> only_all_tested = FALSE) ...`.</span> <span class="r-wrn co"><span class="r-pr">#></span> <span style="color: #00BBBB;">ℹ</span> In group 5: `order = "Lactobacillales"`, `genus = "Enterococcus"`.</span> <span class="r-wrn co"><span class="r-pr">#></span> Caused by warning:</span> <span class="r-wrn co"><span class="r-pr">#></span> <span style="color: #BBBB00;">!</span> Introducing NA: only 14 results available for PEN in group: order =</span> <span class="r-wrn co"><span class="r-pr">#></span> "Lactobacillales", genus = "Enterococcus" (minimum = 30).</span> <span class="r-wrn co"><span class="r-pr">#></span> <span style="color: #00BBBB;">ℹ</span> Run `dplyr::last_dplyr_warnings()` to see the 72 remaining warnings.</span> <span class="r-msg co"><span class="r-pr">#></span> ℹ Columns selected for PCA: "AMC", "CAZ", "CTX", "CXM", "GEN", "SXT",</span> <span class="r-msg co"><span class="r-pr">#></span> "TMP", and "TOB". Total observations available: 7.</span> <span class="r-out co"><span class="r-pr">#></span> Groups (n=4, named as 'order'):</span> <span class="r-out co"><span class="r-pr">#></span> [1] "Caryophanales" "Enterobacterales" "Lactobacillales" "Pseudomonadales" </span> <span class="r-out co"><span class="r-pr">#></span> </span> <span class="r-plt img"><img src="pca-1.png" alt="" width="700" height="433"></span> <span class="r-plt img"><img src="pca-2.png" alt="" width="700" height="433"></span> <span class="r-in"><span><span class="co"># }</span></span></span> </code></pre></div> </div> </main><aside class="col-md-3"><nav id="toc"><h2>On this page</h2> </nav></aside></div> <footer><div class="pkgdown-footer-left"> <p></p><p><code>AMR</code> (for R). Free and open-source, licenced under the <a target="_blank" href="https://github.com/msberends/AMR/blob/main/LICENSE" class="external-link">GNU General Public License version 2.0 (GPL-2)</a>.<br>Developed at the <a target="_blank" href="https://www.rug.nl" class="external-link">University of Groningen</a> and <a target="_blank" href="https://www.umcg.nl" class="external-link">University Medical Center Groningen</a> in The Netherlands.</p> </div> <div class="pkgdown-footer-right"> <p></p><p><a target="_blank" href="https://www.rug.nl" class="external-link"><img src="https://github.com/msberends/AMR/raw/main/pkgdown/logos/logo_rug.svg" style="max-width: 150px;"></a><a target="_blank" href="https://www.umcg.nl" class="external-link"><img src="https://github.com/msberends/AMR/raw/main/pkgdown/logos/logo_umcg.svg" style="max-width: 150px;"></a></p> </div> </footer></div> </body></html>