Skip to contents

These functions determine which items in a vector can be considered (the start of) a new episode, based on the argument episode_days. This can be used to determine clinical episodes for any epidemiological analysis. The get_episode() function returns the index number of the episode per group, while the is_new_episode() function returns values TRUE/FALSE to indicate whether an item in a vector is the start of a new episode.

Usage

get_episode(x, episode_days, ...)

is_new_episode(x, episode_days, ...)

Arguments

x

vector of dates (class Date or POSIXt), will be sorted internally to determine episodes

episode_days

required episode length in days, can also be less than a day or Inf, see Details

...

ignored, only in place to allow future extensions

Value

  • get_episode(): a double vector

  • is_new_episode(): a logical vector

Details

Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least episode_days days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least episode_days days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.

The first_isolate() function is a wrapper around the is_new_episode() function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.

The dplyr package is not required for these functions to work, but these functions do support variable grouping and work conveniently inside dplyr verbs such as filter(), mutate() and summarise().

See also

Examples

# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 200), ]

get_episode(df$date, episode_days = 60) # indices
#>   [1]  1 28 42 53 40 26 58 46  6 36 25 27  6 33 51 28 53 40 17 63 14 14 52 12 39
#>  [26] 45 31  5 43 44 51 42  1 46 53 41 47 55 54 14  7 25 13  5 55 61 60 58 62 11
#>  [51] 23 38 14 62  1 63  1 36 45 63  8  3 56 13 37 17 32 34 23 28 57  7 60 30  3
#>  [76] 63 10 59 61 59  9 59 58 38  5 20 48 51 11  4  7 11 37 60 34 33 17 53 59 36
#> [101] 33 24 25 43 49 39 61 14 13 55 36  9  9  7 11 12 52 62 62  2 54 22 47 13 49
#> [126] 31 17  5  8  4 62 48 60  2 58 37 54 61 39 21 10 44 27  2 17 26 15 62 25 62
#> [151] 29  9 20 59 18 46  8 14 27 32  5 50 55 16 11 32 58 57 39 39 33 49 58 50 45
#> [176] 43 35 61 38 50  1 55 22 55  2 63 59 41 55 31 22 18 19 30 14 52 55 57 57 52
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#>   [1] FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE
#>  [13]  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE
#>  [25] FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE
#>  [37]  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#>  [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
#>  [61] FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE
#>  [73]  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE
#>  [85] FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE
#>  [97] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE
#> [109] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
#> [121] FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE
#> [133] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE
#> [145] FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE
#> [157] FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE
#> [169] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE
#> [181] FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE
#> [193]  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE

# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 2 × 46
#>   date       patient   age gender ward     mo           PEN   OXA   FLC   AMX  
#>   <date>     <chr>   <dbl> <chr>  <chr>    <mo>         <rsi> <rsi> <rsi> <rsi>
#> 1 2002-06-23 798871     82 M      Clinical B_ENTRC_FCLS NA    NA    NA    NA   
#> 2 2002-06-05 24D393     20 F      Clinical B_ESCHR_COLI R     NA    NA    NA   
#> # … with 36 more variables: AMC <rsi>, AMP <rsi>, TZP <rsi>, CZO <rsi>,
#> #   FEP <rsi>, CXM <rsi>, FOX <rsi>, CTX <rsi>, CAZ <rsi>, CRO <rsi>,
#> #   GEN <rsi>, TOB <rsi>, AMK <rsi>, KAN <rsi>, TMP <rsi>, SXT <rsi>,
#> #   NIT <rsi>, FOS <rsi>, LNZ <rsi>, CIP <rsi>, MFX <rsi>, VAN <rsi>,
#> #   TEC <rsi>, TCY <rsi>, TGC <rsi>, DOX <rsi>, ERY <rsi>, CLI <rsi>,
#> #   AZM <rsi>, IPM <rsi>, MEM <rsi>, MTR <rsi>, CHL <rsi>, COL <rsi>,
#> #   MUP <rsi>, RIF <rsi>

# the functions also work for less than a day, e.g. to include one per hour:
get_episode(c(
  Sys.time(),
  Sys.time() + 60 * 60
),
episode_days = 1 / 24
)
#> [1] 1 2

# \donttest{
if (require("dplyr")) {
  # is_new_episode() can also be used in dplyr verbs to determine patient
  # episodes based on any (combination of) grouping variables:
  df %>%
    mutate(condition = sample(
      x = c("A", "B", "C"),
      size = 200,
      replace = TRUE
    )) %>%
    group_by(condition) %>%
    mutate(new_episode = is_new_episode(date, 365)) %>%
    select(patient, date, condition, new_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   condition [3]
#>    patient date       condition new_episode
#>    <chr>   <date>     <chr>     <lgl>      
#>  1 067927  2002-02-05 A         FALSE      
#>  2 733957  2008-10-10 B         FALSE      
#>  3 686445  2012-05-24 B         TRUE       
#>  4 900485  2015-05-27 A         FALSE      
#>  5 50C8DB  2011-09-01 A         FALSE      
#>  6 181687  2008-05-04 B         TRUE       
#>  7 675894  2016-06-03 B         FALSE      
#>  8 835073  2013-09-27 B         TRUE       
#>  9 000090  2003-10-08 A         TRUE       
#> 10 874171  2010-10-26 C         TRUE       
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward, patient) %>%
    transmute(date,
      patient,
      new_index = get_episode(date, 60),
      new_logical = is_new_episode(date, 60)
    )
}
#> # A tibble: 200 × 5
#> # Groups:   ward, patient [175]
#>    ward       date       patient new_index new_logical
#>    <chr>      <date>     <chr>       <dbl> <lgl>      
#>  1 ICU        2002-02-05 067927          1 TRUE       
#>  2 ICU        2008-10-10 733957          1 TRUE       
#>  3 Clinical   2012-05-24 686445          1 TRUE       
#>  4 ICU        2015-05-27 900485          1 TRUE       
#>  5 Clinical   2011-09-01 50C8DB          1 TRUE       
#>  6 Outpatient 2008-05-04 181687          1 TRUE       
#>  7 ICU        2016-06-03 675894          1 TRUE       
#>  8 Clinical   2013-09-27 835073          1 TRUE       
#>  9 ICU        2003-10-08 000090          1 TRUE       
#> 10 Clinical   2010-10-26 874171          1 TRUE       
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward) %>%
    summarise(
      n_patients = n_distinct(patient),
      n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
      n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
      n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
    )
}
#> # A tibble: 3 × 5
#>   ward       n_patients n_episodes_365 n_episodes_60 n_episodes_30
#>   <chr>           <int>          <int>         <int>         <int>
#> 1 Clinical          105             14            55            71
#> 2 ICU                55             12            31            40
#> 3 Outpatient         15              6            12            14
if (require("dplyr")) {

  # grouping on patients and microorganisms leads to the same
  # results as first_isolate() when using 'episode-based':
  x <- df %>%
    filter_first_isolate(
      include_unknown = TRUE,
      method = "episode-based"
    )

  y <- df %>%
    group_by(patient, mo) %>%
    filter(is_new_episode(date, 365)) %>%
    ungroup()

  identical(x, y)
}
#> Including isolates from ICU.
#> [1] FALSE
if (require("dplyr")) {

  # but is_new_episode() has a lot more flexibility than first_isolate(),
  # since you can now group on anything that seems relevant:
  df %>%
    group_by(patient, mo, ward) %>%
    mutate(flag_episode = is_new_episode(date, 365)) %>%
    select(group_vars(.), flag_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   patient, mo, ward [186]
#>    patient mo           ward       flag_episode
#>    <chr>   <mo>         <chr>      <lgl>       
#>  1 067927  B_SERRT_MRCS ICU        TRUE        
#>  2 733957  B_ESCHR_COLI ICU        TRUE        
#>  3 686445  B_STPHY_CONS Clinical   TRUE        
#>  4 900485  B_STRPT_MITS ICU        TRUE        
#>  5 50C8DB  B_STPHY_EPDR Clinical   TRUE        
#>  6 181687  B_STRPT_ANGN Outpatient TRUE        
#>  7 675894  B_ESCHR_COLI ICU        TRUE        
#>  8 835073  B_STPHY_HMNS Clinical   TRUE        
#>  9 000090  B_STPHY_EPDR ICU        TRUE        
#> 10 874171  B_STPHY_CONS Clinical   TRUE        
#> # … with 190 more rows
# }