% Generated by roxygen2: do not edit by hand % Please edit documentation in R/count.R \name{count} \alias{count} \alias{count_resistant} \alias{count_susceptible} \alias{count_S} \alias{count_SI} \alias{count_I} \alias{count_IR} \alias{count_R} \alias{count_all} \alias{n_sir} \alias{count_df} \title{Count Available Isolates} \usage{ count_resistant(..., only_all_tested = FALSE) count_susceptible(..., only_all_tested = FALSE) count_S(..., only_all_tested = FALSE) count_SI(..., only_all_tested = FALSE) count_I(..., only_all_tested = FALSE) count_IR(..., only_all_tested = FALSE) count_R(..., only_all_tested = FALSE) count_all(..., only_all_tested = FALSE) n_sir(..., only_all_tested = FALSE) count_df(data, translate_ab = "name", language = get_AMR_locale(), combine_SI = TRUE) } \arguments{ \item{...}{One or more vectors (or columns) with antibiotic interpretations. They will be transformed internally with \code{\link[=as.sir]{as.sir()}} if needed.} \item{only_all_tested}{(for combination therapies, i.e. using more than one variable for \code{...}): a \link{logical} to indicate that isolates must be tested for all antimicrobials, see section \emph{Combination Therapy} below.} \item{data}{A \link{data.frame} containing columns with class \code{\link{sir}} (see \code{\link[=as.sir]{as.sir()}}).} \item{translate_ab}{A column name of the \link{antimicrobials} data set to translate the antibiotic abbreviations to, using \code{\link[=ab_property]{ab_property()}}.} \item{language}{Language of the returned text - the default is the current system language (see \code{\link[=get_AMR_locale]{get_AMR_locale()}}) and can also be set with the package option \code{\link[=AMR-options]{AMR_locale}}. Use \code{language = NULL} or \code{language = ""} to prevent translation.} \item{combine_SI}{A \link{logical} to indicate whether all values of S, SDD, and I must be merged into one, so the output only consists of S+SDD+I vs. R (susceptible vs. resistant) - the default is \code{TRUE}.} } \value{ An \link{integer} } \description{ These functions can be used to count resistant/susceptible microbial isolates. All functions support quasiquotation with pipes, can be used in \code{summarise()} from the \code{dplyr} package and also support grouped variables, see \emph{Examples}. \code{\link[=count_resistant]{count_resistant()}} should be used to count resistant isolates, \code{\link[=count_susceptible]{count_susceptible()}} should be used to count susceptible isolates. } \details{ These functions are meant to count isolates. Use the \code{\link[=resistance]{resistance()}}/\code{\link[=susceptibility]{susceptibility()}} functions to calculate microbial resistance/susceptibility. The function \code{\link[=count_resistant]{count_resistant()}} is equal to the function \code{\link[=count_R]{count_R()}}. The function \code{\link[=count_susceptible]{count_susceptible()}} is equal to the function \code{\link[=count_SI]{count_SI()}}. The function \code{\link[=n_sir]{n_sir()}} is an alias of \code{\link[=count_all]{count_all()}}. They can be used to count all available isolates, i.e. where all input antimicrobials have an available result (S, I or R). Their use is equal to \code{n_distinct()}. Their function is equal to \code{count_susceptible(...) + count_resistant(...)}. The function \code{\link[=count_df]{count_df()}} takes any variable from \code{data} that has an \code{\link{sir}} class (created with \code{\link[=as.sir]{as.sir()}}) and counts the number of S's, I's and R's. It also supports grouped variables. The function \code{\link[=sir_df]{sir_df()}} works exactly like \code{\link[=count_df]{count_df()}}, but adds the percentage of S, I and R. } \section{Interpretation of SIR}{ In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided to change the definitions of susceptibility testing categories S, I, and R (\url{https://www.eucast.org/newsiandr}). This AMR package follows insight; use \code{\link[=susceptibility]{susceptibility()}} (equal to \code{\link[=proportion_SI]{proportion_SI()}}) to determine antimicrobial susceptibility and \code{\link[=count_susceptible]{count_susceptible()}} (equal to \code{\link[=count_SI]{count_SI()}}) to count susceptible isolates. } \section{Combination Therapy}{ When using more than one variable for \code{...} (= combination therapy), use \code{only_all_tested} to only count isolates that are tested for all antimicrobials/variables that you test them for. See this example for two antimicrobials, Drug A and Drug B, about how \code{\link[=susceptibility]{susceptibility()}} works to calculate the \%SI: \if{html}{\out{
}}\preformatted{-------------------------------------------------------------------- only_all_tested = FALSE only_all_tested = TRUE ----------------------- ----------------------- Drug A Drug B considered considered considered considered susceptible tested susceptible tested -------- -------- ----------- ---------- ----------- ---------- S or I S or I X X X X R S or I X X X X S or I X X - - S or I R X X X X R R - X - X R - - - - S or I X X - - R - - - - - - - - -------------------------------------------------------------------- }\if{html}{\out{
}} Please note that, in combination therapies, for \code{only_all_tested = TRUE} applies that: \if{html}{\out{
}}\preformatted{ count_S() + count_I() + count_R() = count_all() proportion_S() + proportion_I() + proportion_R() = 1 }\if{html}{\out{
}} and that, in combination therapies, for \code{only_all_tested = FALSE} applies that: \if{html}{\out{
}}\preformatted{ count_S() + count_I() + count_R() >= count_all() proportion_S() + proportion_I() + proportion_R() >= 1 }\if{html}{\out{
}} Using \code{only_all_tested} has no impact when only using one antibiotic as input. } \examples{ # example_isolates is a data set available in the AMR package. # run ?example_isolates for more info. # base R ------------------------------------------------------------ count_resistant(example_isolates$AMX) # counts "R" count_susceptible(example_isolates$AMX) # counts "S" and "I" count_all(example_isolates$AMX) # counts "S", "I" and "R" # be more specific count_S(example_isolates$AMX) count_SI(example_isolates$AMX) count_I(example_isolates$AMX) count_IR(example_isolates$AMX) count_R(example_isolates$AMX) # Count all available isolates count_all(example_isolates$AMX) n_sir(example_isolates$AMX) # n_sir() is an alias of count_all(). # Since it counts all available isolates, you can # calculate back to count e.g. susceptible isolates. # These results are the same: count_susceptible(example_isolates$AMX) susceptibility(example_isolates$AMX) * n_sir(example_isolates$AMX) # dplyr ------------------------------------------------------------- \donttest{ if (require("dplyr")) { example_isolates \%>\% group_by(ward) \%>\% summarise( R = count_R(CIP), I = count_I(CIP), S = count_S(CIP), n1 = count_all(CIP), # the actual total; sum of all three n2 = n_sir(CIP), # same - analogous to n_distinct total = n() ) # NOT the number of tested isolates! # Number of available isolates for a whole antibiotic class # (i.e., in this data set columns GEN, TOB, AMK, KAN) example_isolates \%>\% group_by(ward) \%>\% summarise(across(aminoglycosides(), n_sir)) # Count co-resistance between amoxicillin/clav acid and gentamicin, # so we can see that combination therapy does a lot more than mono therapy. # Please mind that `susceptibility()` calculates percentages right away instead. example_isolates \%>\% count_susceptible(AMC) # 1433 example_isolates \%>\% count_all(AMC) # 1879 example_isolates \%>\% count_susceptible(GEN) # 1399 example_isolates \%>\% count_all(GEN) # 1855 example_isolates \%>\% count_susceptible(AMC, GEN) # 1764 example_isolates \%>\% count_all(AMC, GEN) # 1936 # Get number of S+I vs. R immediately of selected columns example_isolates \%>\% select(AMX, CIP) \%>\% count_df(translate = FALSE) # It also supports grouping variables example_isolates \%>\% select(ward, AMX, CIP) \%>\% group_by(ward) \%>\% count_df(translate = FALSE) } } } \seealso{ \code{\link[=proportion]{proportion_*}} to calculate microbial resistance and susceptibility. }