# ==================================================================== # # TITLE # # Antimicrobial Resistance (AMR) Data Analysis for R # # # # SOURCE # # https://github.com/msberends/AMR # # # # LICENCE # # (c) 2018-2021 Berends MS, Luz CF et al. # # Developed at the University of Groningen, the Netherlands, in # # collaboration with non-profit organisations Certe Medical # # Diagnostics & Advice, and University Medical Center Groningen. # # # # This R package is free software; you can freely use and distribute # # it for both personal and commercial purposes under the terms of the # # GNU General Public License version 2.0 (GNU GPL-2), as published by # # the Free Software Foundation. # # We created this package for both routine data analysis and academic # # research and it was publicly released in the hope that it will be # # useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. # # # # Visit our website for the full manual and a complete tutorial about # # how to conduct AMR data analysis: https://msberends.github.io/AMR/ # # ==================================================================== # context("resistance_predict.R") test_that("prediction of rsi works", { skip_on_cran() if (suppressWarnings(require("dplyr"))) { expect_output(AMX_R <- example_isolates %>% filter(mo == "B_ESCHR_COLI") %>% rsi_predict(col_ab = "AMX", col_date = "date", model = "binomial", minimum = 10, info = TRUE) %>% pull("value")) # AMX resistance will increase according to data set `example_isolates` expect_true(AMX_R[3] < AMX_R[20]) } expect_output(x <- suppressMessages(resistance_predict(example_isolates, col_ab = "AMX", year_min = 2010, model = "binomial", info = TRUE))) pdf(NULL) # prevent Rplots.pdf being created expect_silent(plot(x)) expect_silent(ggplot_rsi_predict(x)) expect_silent(ggplot(x)) expect_error(ggplot_rsi_predict(example_isolates)) expect_output(rsi_predict(x = subset(example_isolates, mo == "B_ESCHR_COLI"), model = "binomial", col_ab = "AMX", col_date = "date", info = TRUE)) expect_output(rsi_predict(x = subset(example_isolates, mo == "B_ESCHR_COLI"), model = "loglin", col_ab = "AMX", col_date = "date", info = TRUE)) expect_output(rsi_predict(x = subset(example_isolates, mo == "B_ESCHR_COLI"), model = "lin", col_ab = "AMX", col_date = "date", info = TRUE)) expect_error(rsi_predict(x = subset(example_isolates, mo == "B_ESCHR_COLI"), model = "INVALID MODEL", col_ab = "AMX", col_date = "date", info = TRUE)) expect_error(rsi_predict(x = subset(example_isolates, mo == "B_ESCHR_COLI"), model = "binomial", col_ab = "NOT EXISTING COLUMN", col_date = "date", info = TRUE)) expect_error(rsi_predict(x = subset(example_isolates, mo == "B_ESCHR_COLI"), model = "binomial", col_ab = "AMX", col_date = "NOT EXISTING COLUMN", info = TRUE)) expect_error(rsi_predict(x = subset(example_isolates, mo == "B_ESCHR_COLI"), col_ab = "AMX", col_date = "NOT EXISTING COLUMN", info = TRUE)) expect_error(rsi_predict(x = subset(example_isolates, mo == "B_ESCHR_COLI"), col_ab = "AMX", col_date = "date", info = TRUE)) # almost all E. coli are MEM S in the Netherlands :) expect_error(resistance_predict(x = subset(example_isolates, mo == "B_ESCHR_COLI"), model = "binomial", col_ab = "MEM", col_date = "date", info = TRUE)) })