% Generated by roxygen2: do not edit by hand % Please edit documentation in R/rsi_analysis.R \name{rsi_predict} \alias{rsi_predict} \title{Predict antimicrobial resistance} \usage{ rsi_predict(tbl, col_ab, col_date, year_max = as.integer(format(as.Date(Sys.Date()), "\%Y")) + 15, year_every = 1, model = "binomial", I_as_R = TRUE, preserve_measurements = TRUE, info = TRUE) } \arguments{ \item{tbl}{table that contains columns \code{col_ab} and \code{col_date}} \item{col_ab}{column name of \code{tbl} with antimicrobial interpretations (\code{R}, \code{I} and \code{S}), supports tidyverse-like quotation} \item{col_date}{column name of the date, will be used to calculate years if this column doesn't consist of years already, supports tidyverse-like quotation} \item{year_max}{highest year to use in the prediction model, deafults to 15 years after today} \item{year_every}{unit of sequence between lowest year found in the data and \code{year_max}} \item{model}{the statistical model of choice. Valid values are \code{"binomial"} (or \code{"binom"} or \code{"logit"}) or \code{"loglin"} or \code{"linear"} (or \code{"lin"}).} \item{I_as_R}{treat \code{I} as \code{R}} \item{preserve_measurements}{overwrite predictions of years that are actually available in the data, with the original data. The standard errors of those years will be \code{NA}.} \item{info}{print textual analysis with the name and \code{\link{summary}} of the model.} } \value{ \code{data.frame} with columns \code{year}, \code{probR}, \code{se_min} and \code{se_max}. } \description{ Create a prediction model to predict antimicrobial resistance for the next years on statistical solid ground. Standard errors (SE) will be returned as columns \code{se_min} and \code{se_max}. See Examples for a real live example. } \examples{ \dontrun{ # use it directly: rsi_predict(tbl = tbl[which(first_isolate == TRUE & genus == "Haemophilus"),], col_ab = "amcl", col_date = "date") # or with dplyr so you can actually read it: library(dplyr) tbl \%>\% filter(first_isolate == TRUE, genus == "Haemophilus") \%>\% rsi_predict(amcl, date) } # real live example: library(dplyr) septic_patients \%>\% # get bacteria properties like genus and species left_join_microorganisms("bactid") \%>\% # calculate first isolates mutate(first_isolate = first_isolate(., "date", "patient_id", "genus", "species", col_specimen = NA, col_icu = NA)) \%>\% # filter on first E. coli isolates filter(genus == "Escherichia", species == "coli", first_isolate == TRUE) \%>\% # predict resistance of cefotaxime for next years rsi_predict(col_ab = cfot, col_date = date, year_max = 2025, preserve_measurements = FALSE) } \seealso{ \code{\link{lm}} \cr \code{\link{glm}} }