Skip to contents

These functions determine which items in a vector can be considered (the start of) a new episode, based on the argument episode_days. This can be used to determine clinical episodes for any epidemiological analysis. The get_episode() function returns the index number of the episode per group, while the is_new_episode() function returns values TRUE/FALSE to indicate whether an item in a vector is the start of a new episode.

Usage

get_episode(x, episode_days, ...)

is_new_episode(x, episode_days, ...)

Arguments

x

vector of dates (class Date or POSIXt), will be sorted internally to determine episodes

episode_days

required episode length in days, can also be less than a day or Inf, see Details

...

ignored, only in place to allow future extensions

Value

  • get_episode(): a double vector

  • is_new_episode(): a logical vector

Details

Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least episode_days days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least episode_days days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.

The first_isolate() function is a wrapper around the is_new_episode() function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.

The dplyr package is not required for these functions to work, but these functions do support variable grouping and work conveniently inside dplyr verbs such as filter(), mutate() and summarise().

See also

Examples

# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 200), ]

get_episode(df$date, episode_days = 60) # indices
#>   [1] 14 30 51 29 53 28 49 36  9  7 29  9 43 30 20 51  5  2  5  9 27  6 21 25 14
#>  [26] 20 29 22 42 51 56 39 31 47  1 10 56  7 54 13 39 20 44 10 37 45 26 42 53  3
#>  [51]  2  7 13 51 48 52 31  9 38 50 54 15 41 53 38 23 16  9 26 12  5 26  4  6 31
#>  [76]  7 40 27 55 57 22 52 27 36 26 16 10 48 23 36 49 47  6  6 56 22 51 48 44 24
#> [101] 58 33 47 49 58 32  8  6 21  3 14 33 57 43 14 50  6  3 53  6 18 15 52 31 22
#> [126]  7 47  6 42 39 45  1 49 23 53 13 18 35  8 57 12 11 17  3 55 16 12 54 55 14
#> [151]  9 46 51 55 19  7 36  8 57  4 14 45 45 59 38 55 25 23 60 57 39 38 54 16 31
#> [176]  3 16 39 50 37 40 14 53 60  6 34 32 14  3 30 52 24 23  1 59 52 11 41  7 26
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#>   [1] FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE
#>  [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE
#>  [25] FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE
#>  [37] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE
#>  [49] FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE
#>  [61] FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
#>  [73] FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE
#>  [85]  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
#>  [97] FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE
#> [109] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE
#> [121]  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
#> [133] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE
#> [145] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE
#> [157]  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE
#> [169]  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [181] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE
#> [193]  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE

# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 6 × 46
#>   date       patient   age gender ward     mo           PEN   OXA   FLC   AMX  
#>   <date>     <chr>   <dbl> <chr>  <chr>    <mo>         <sir> <sir> <sir> <sir>
#> 1 2002-11-07 430011     82 F      Clinical B_STPHY_CONS R     NA    R     R    
#> 2 2002-10-18 E55128     57 F      ICU      B_STPHY_AURS R     NA    S     R    
#> 3 2002-11-14 058917     76 F      ICU      B_STPHY_HMNS R     NA    S     NA   
#> 4 2002-10-18 E55128     57 F      ICU      B_STPHY_AURS R     NA    S     R    
#> 5 2002-11-18 956065     89 F      Clinical B_ESCHR_COLI R     NA    NA    NA   
#> 6 2002-10-14 FCC668     54 F      ICU      B_ACNTB      R     NA    NA    NA   
#> # … with 36 more variables: AMC <sir>, AMP <sir>, TZP <sir>, CZO <sir>,
#> #   FEP <sir>, CXM <sir>, FOX <sir>, CTX <sir>, CAZ <sir>, CRO <sir>,
#> #   GEN <sir>, TOB <sir>, AMK <sir>, KAN <sir>, TMP <sir>, SXT <sir>,
#> #   NIT <sir>, FOS <sir>, LNZ <sir>, CIP <sir>, MFX <sir>, VAN <sir>,
#> #   TEC <sir>, TCY <sir>, TGC <sir>, DOX <sir>, ERY <sir>, CLI <sir>,
#> #   AZM <sir>, IPM <sir>, MEM <sir>, MTR <sir>, CHL <sir>, COL <sir>,
#> #   MUP <sir>, RIF <sir>

# the functions also work for less than a day, e.g. to include one per hour:
get_episode(
  c(
    Sys.time(),
    Sys.time() + 60 * 60
  ),
  episode_days = 1 / 24
)
#> [1] 1 2

# \donttest{
if (require("dplyr")) {
  # is_new_episode() can also be used in dplyr verbs to determine patient
  # episodes based on any (combination of) grouping variables:
  df %>%
    mutate(condition = sample(
      x = c("A", "B", "C"),
      size = 200,
      replace = TRUE
    )) %>%
    group_by(condition) %>%
    mutate(new_episode = is_new_episode(date, 365)) %>%
    select(patient, date, condition, new_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   condition [3]
#>    patient date       condition new_episode
#>    <chr>   <date>     <chr>     <lgl>      
#>  1 277241  2005-08-31 A         FALSE      
#>  2 A86006  2009-08-09 C         FALSE      
#>  3 16DC39  2015-11-19 A         FALSE      
#>  4 F68330  2009-04-09 A         FALSE      
#>  5 A79917  2016-05-21 B         FALSE      
#>  6 A80D37  2009-01-19 A         FALSE      
#>  7 335263  2015-04-30 B         FALSE      
#>  8 257844  2011-05-22 B         FALSE      
#>  9 B8F499  2004-08-22 B         FALSE      
#> 10 F35553  2004-02-28 A         FALSE      
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward, patient) %>%
    transmute(date,
      patient,
      new_index = get_episode(date, 60),
      new_logical = is_new_episode(date, 60)
    )
}
#> # A tibble: 200 × 5
#> # Groups:   ward, patient [183]
#>    ward     date       patient new_index new_logical
#>    <chr>    <date>     <chr>       <dbl> <lgl>      
#>  1 ICU      2005-08-31 277241          1 TRUE       
#>  2 Clinical 2009-08-09 A86006          1 TRUE       
#>  3 ICU      2015-11-19 16DC39          1 TRUE       
#>  4 Clinical 2009-04-09 F68330          1 TRUE       
#>  5 Clinical 2016-05-21 A79917          1 TRUE       
#>  6 Clinical 2009-01-19 A80D37          1 TRUE       
#>  7 Clinical 2015-04-30 335263          1 TRUE       
#>  8 Clinical 2011-05-22 257844          1 TRUE       
#>  9 Clinical 2004-08-22 B8F499          1 TRUE       
#> 10 ICU      2004-02-28 F35553          2 TRUE       
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward) %>%
    summarise(
      n_patients = n_distinct(patient),
      n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
      n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
      n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
    )
}
#> # A tibble: 3 × 5
#>   ward       n_patients n_episodes_365 n_episodes_60 n_episodes_30
#>   <chr>           <int>          <int>         <int>         <int>
#> 1 Clinical          114             15            53            73
#> 2 ICU                62             12            38            46
#> 3 Outpatient          7              6             7             7
if (require("dplyr")) {
  # grouping on patients and microorganisms leads to the same
  # results as first_isolate() when using 'episode-based':
  x <- df %>%
    filter_first_isolate(
      include_unknown = TRUE,
      method = "episode-based"
    )

  y <- df %>%
    group_by(patient, mo) %>%
    filter(is_new_episode(date, 365)) %>%
    ungroup()

  identical(x, y)
}
#> Including isolates from ICU.
#> [1] FALSE
if (require("dplyr")) {
  # but is_new_episode() has a lot more flexibility than first_isolate(),
  # since you can now group on anything that seems relevant:
  df %>%
    group_by(patient, mo, ward) %>%
    mutate(flag_episode = is_new_episode(date, 365)) %>%
    select(group_vars(.), flag_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   patient, mo, ward [189]
#>    patient mo            ward     flag_episode
#>    <chr>   <mo>          <chr>    <lgl>       
#>  1 277241  B_STPHY_AURS  ICU      TRUE        
#>  2 A86006  B_STPHY_CONS  Clinical TRUE        
#>  3 16DC39  B_STPHY_HMLY  ICU      TRUE        
#>  4 F68330  B_STRPT_PNMN  Clinical TRUE        
#>  5 A79917  B_ENTRC_FACM  Clinical TRUE        
#>  6 A80D37  B_ESCHR_COLI  Clinical TRUE        
#>  7 335263  B_ENTRBC_CLOC Clinical TRUE        
#>  8 257844  B_STPHY_CONS  Clinical TRUE        
#>  9 B8F499  B_STPHY_CONS  Clinical TRUE        
#> 10 F35553  B_STPHY_AURS  ICU      TRUE        
#> # … with 190 more rows
# }