# ==================================================================== # # TITLE # # Antimicrobial Resistance (AMR) Data Analysis for R # # # # SOURCE # # https://github.com/msberends/AMR # # # # LICENCE # # (c) 2018-2021 Berends MS, Luz CF et al. # # Developed at the University of Groningen, the Netherlands, in # # collaboration with non-profit organisations Certe Medical # # Diagnostics & Advice, and University Medical Center Groningen. # # # # This R package is free software; you can freely use and distribute # # it for both personal and commercial purposes under the terms of the # # GNU General Public License version 2.0 (GNU GPL-2), as published by # # the Free Software Foundation. # # We created this package for both routine data analysis and academic # # research and it was publicly released in the hope that it will be # # useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. # # # # Visit our website for the full manual and a complete tutorial about # # how to conduct AMR data analysis: https://msberends.github.io/AMR/ # # ==================================================================== # if (getRversion() < "3.2") { expect_warning(example_isolates[, aminoglycosides(), drop = FALSE]) } if (getRversion() >= "3.2") { # antibiotic class selectors require at least R-3.2 expect_true(ncol(example_isolates[, ab_class("antimyco"), drop = FALSE]) < ncol(example_isolates)) expect_true(ncol(example_isolates[, aminoglycosides(), drop = FALSE]) < ncol(example_isolates)) expect_true(ncol(example_isolates[, aminopenicillins(), drop = FALSE]) < ncol(example_isolates)) expect_true(ncol(example_isolates[, betalactams(), drop = FALSE]) < ncol(example_isolates)) expect_true(ncol(example_isolates[, carbapenems(), drop = FALSE]) < ncol(example_isolates)) expect_true(ncol(example_isolates[, cephalosporins(), drop = FALSE]) < ncol(example_isolates)) expect_true(ncol(example_isolates[, cephalosporins_1st(), drop = FALSE]) < ncol(example_isolates)) expect_true(ncol(example_isolates[, cephalosporins_2nd(), drop = FALSE]) < ncol(example_isolates)) expect_true(ncol(example_isolates[, cephalosporins_3rd(), drop = FALSE]) < ncol(example_isolates)) expect_true(ncol(example_isolates[, cephalosporins_4th(), drop = FALSE]) < ncol(example_isolates)) expect_true(ncol(example_isolates[, cephalosporins_5th(), drop = FALSE]) < ncol(example_isolates)) expect_true(ncol(example_isolates[, fluoroquinolones(), drop = FALSE]) < ncol(example_isolates)) expect_true(ncol(example_isolates[, glycopeptides(), drop = FALSE]) < ncol(example_isolates)) expect_true(ncol(example_isolates[, lincosamides(), drop = FALSE]) < ncol(example_isolates)) expect_true(ncol(example_isolates[, lipoglycopeptides(), drop = FALSE]) < ncol(example_isolates)) expect_true(ncol(example_isolates[, macrolides(), drop = FALSE]) < ncol(example_isolates)) expect_true(ncol(example_isolates[, oxazolidinones(), drop = FALSE]) < ncol(example_isolates)) expect_true(ncol(example_isolates[, penicillins(), drop = FALSE]) < ncol(example_isolates)) expect_true(ncol(example_isolates[, polymyxins(), drop = FALSE]) < ncol(example_isolates)) expect_true(ncol(example_isolates[, streptogramins(), drop = FALSE]) < ncol(example_isolates)) expect_true(ncol(example_isolates[, quinolones(), drop = FALSE]) < ncol(example_isolates)) expect_true(ncol(example_isolates[, tetracyclines(), drop = FALSE]) < ncol(example_isolates)) expect_true(ncol(example_isolates[, ureidopenicillins(), drop = FALSE]) < ncol(example_isolates)) # Examples: # select columns 'mo', 'AMK', 'GEN', 'KAN' and 'TOB' expect_equal(ncol(example_isolates[, c("mo", aminoglycosides())]), 5, tolerance = 0.5) # filter using any() or all() expect_equal(nrow(example_isolates[any(carbapenems() == "R"), ]), 55, tolerance = 0.5) expect_equal(nrow(subset(example_isolates, any(carbapenems() == "R"))), 55, tolerance = 0.5) # filter on any or all results in the carbapenem columns (i.e., IPM, MEM): expect_equal(nrow(example_isolates[any(carbapenems()), ]), 962, tolerance = 0.5) expect_equal(nrow(example_isolates[all(carbapenems()), ]), 756, tolerance = 0.5) # filter with multiple antibiotic selectors using c() expect_equal(nrow(example_isolates[all(c(carbapenems(), aminoglycosides()) == "R"), ]), 26, tolerance = 0.5) # filter + select in one go: get penicillins in carbapenems-resistant strains expect_equal(nrow(example_isolates[any(carbapenems() == "R"), penicillins()]), 55, tolerance = 0.5) expect_equal(ncol(example_isolates[any(carbapenems() == "R"), penicillins()]), 7, tolerance = 0.5) }