# ==================================================================== # # TITLE # # AMR: An R Package for Working with Antimicrobial Resistance Data # # # # SOURCE # # https://github.com/msberends/AMR # # # # CITE AS # # Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C # # (2022). AMR: An R Package for Working with Antimicrobial Resistance # # Data. Journal of Statistical Software, 104(3), 1-31. # # doi:10.18637/jss.v104.i03 # # # # Developed at the University of Groningen and the University Medical # # Center Groningen in The Netherlands, in collaboration with many # # colleagues from around the world, see our website. # # # # This R package is free software; you can freely use and distribute # # it for both personal and commercial purposes under the terms of the # # GNU General Public License version 2.0 (GNU GPL-2), as published by # # the Free Software Foundation. # # We created this package for both routine data analysis and academic # # research and it was publicly released in the hope that it will be # # useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. # # # # Visit our website for the full manual and a complete tutorial about # # how to conduct AMR data analysis: https://msberends.github.io/AMR/ # # ==================================================================== # dots2vars <- function(...) { # this function is to give more informative output about # variable names in count_* and proportion_* functions dots <- substitute(list(...)) dots <- as.character(dots)[2:length(dots)] paste0(dots[dots != "."], collapse = "+") } sir_calc <- function(..., ab_result, minimum = 0, as_percent = FALSE, only_all_tested = FALSE, only_count = FALSE) { meet_criteria(ab_result, allow_class = c("character", "numeric", "integer"), has_length = c(1, 2, 3)) meet_criteria(minimum, allow_class = c("numeric", "integer"), has_length = 1, is_positive_or_zero = TRUE, is_finite = TRUE) meet_criteria(as_percent, allow_class = "logical", has_length = 1) meet_criteria(only_all_tested, allow_class = "logical", has_length = 1) meet_criteria(only_count, allow_class = "logical", has_length = 1) data_vars <- dots2vars(...) dots_df <- switch(1, ... ) if (is.data.frame(dots_df)) { # make sure to remove all other classes like tibbles, data.tables, etc dots_df <- as.data.frame(dots_df, stringsAsFactors = FALSE) } dots <- eval(substitute(alist(...))) stop_if(length(dots) == 0, "no variables selected", call = -2) stop_if("also_single_tested" %in% names(dots), "`also_single_tested` was replaced by `only_all_tested`.\n", "Please read Details in the help page (`?proportion`) as this may have a considerable impact on your analysis.", call = -2 ) ndots <- length(dots) if (is.data.frame(dots_df)) { # data.frame passed with other columns, like: example_isolates %pm>% proportion_S(AMC, GEN) dots <- as.character(dots) # remove first element, it's the data.frame if (length(dots) == 1) { dots <- character(0) } else { dots <- dots[2:length(dots)] } if (length(dots) == 0 || all(dots == "df")) { # for complete data.frames, like example_isolates %pm>% select(AMC, GEN) %pm>% proportion_S() # and the old sir function, which has "df" as name of the first argument x <- dots_df } else { # get dots that are in column names already, and the ones that will be once evaluated using dots_df or global env # this is to support susceptibility(example_isolates, AMC, any_of(some_vector_with_AB_names)) dots <- c( dots[dots %in% colnames(dots_df)], eval(parse(text = dots[!dots %in% colnames(dots_df)]), envir = dots_df, enclos = globalenv()) ) dots_not_exist <- dots[!dots %in% colnames(dots_df)] stop_if(length(dots_not_exist) > 0, "column(s) not found: ", vector_and(dots_not_exist, quotes = TRUE), call = -2) x <- dots_df[, dots, drop = FALSE] } } else if (ndots == 1) { # only 1 variable passed (can also be data.frame), like: proportion_S(example_isolates$AMC) and example_isolates$AMC %pm>% proportion_S() x <- dots_df } else { # multiple variables passed without pipe, like: proportion_S(example_isolates$AMC, example_isolates$GEN) x <- NULL try(x <- as.data.frame(dots, stringsAsFactors = FALSE), silent = TRUE) if (is.null(x)) { # support for example_isolates %pm>% group_by(ward) %pm>% summarise(amox = susceptibility(GEN, AMX)) x <- as.data.frame(list(...), stringsAsFactors = FALSE) } } if (is.null(x)) { warning_("argument is NULL (check if columns exist): returning NA") if (as_percent == TRUE) { return(NA_character_) } else { return(NA_real_) } } print_warning <- FALSE ab_result <- as.sir(ab_result) if (is.data.frame(x)) { sir_integrity_check <- character(0) for (i in seq_len(ncol(x))) { # check integrity of columns: force 'sir' class if (!is.sir(x[, i, drop = TRUE])) { sir_integrity_check <- c(sir_integrity_check, as.character(x[, i, drop = TRUE])) x[, i] <- suppressWarnings(as.sir(x[, i, drop = TRUE])) # warning will be given later print_warning <- TRUE } } if (length(sir_integrity_check) > 0) { # this will give a warning for invalid results, of all input columns (so only 1 warning) sir_integrity_check <- as.sir(sir_integrity_check) } x_transposed <- as.list(as.data.frame(t(x), stringsAsFactors = FALSE)) if (isTRUE(only_all_tested)) { # no NAs in any column y <- apply( X = as.data.frame(lapply(x, as.integer), stringsAsFactors = FALSE), MARGIN = 1, FUN = min ) numerator <- sum(as.integer(y) %in% as.integer(ab_result), na.rm = TRUE) denominator <- sum(vapply(FUN.VALUE = logical(1), x_transposed, function(y) !(anyNA(y)))) } else { # may contain NAs in any column other_values <- setdiff(c(NA, levels(ab_result)), ab_result) numerator <- sum(vapply(FUN.VALUE = logical(1), x_transposed, function(y) any(y %in% ab_result, na.rm = TRUE))) denominator <- sum(vapply(FUN.VALUE = logical(1), x_transposed, function(y) !(all(y %in% other_values) & anyNA(y)))) } } else { # x is not a data.frame if (!is.sir(x)) { x <- as.sir(x) print_warning <- TRUE } numerator <- sum(x %in% ab_result, na.rm = TRUE) denominator <- sum(x %in% levels(ab_result), na.rm = TRUE) } if (print_warning == TRUE) { if (message_not_thrown_before("sir_calc")) { warning_("Increase speed by transforming to class 'sir' on beforehand:\n", " your_data %>% mutate_if(is_sir_eligible, as.sir)", call = FALSE ) } } if (only_count == TRUE) { return(numerator) } if (denominator < minimum) { if (data_vars != "") { data_vars <- paste(" for", data_vars) # also add group name if used in dplyr::group_by() cur_group <- import_fn("cur_group", "dplyr", error_on_fail = FALSE) if (!is.null(cur_group)) { group_df <- tryCatch(cur_group(), error = function(e) data.frame()) if (NCOL(group_df) > 0) { # transform factors to characters group <- vapply(FUN.VALUE = character(1), group_df, function(x) { if (is.numeric(x)) { format(x) } else if (is.logical(x)) { as.character(x) } else { paste0('"', x, '"') } }) data_vars <- paste0(data_vars, " in group: ", paste0(names(group), " = ", group, collapse = ", ")) } } } warning_("Introducing NA: ", ifelse(denominator == 0, "no", paste("only", denominator)), " results available", data_vars, " (`minimum` = ", minimum, ").", call = FALSE ) fraction <- NA_real_ } else { fraction <- numerator / denominator fraction[is.nan(fraction)] <- NA_real_ } if (as_percent == TRUE) { percentage(fraction, digits = 1) } else { fraction } } sir_calc_df <- function(type, # "proportion", "count" or "both" data, translate_ab = "name", language = get_AMR_locale(), minimum = 30, as_percent = FALSE, combine_SI = TRUE, confidence_level = 0.95) { meet_criteria(type, is_in = c("proportion", "count", "both"), has_length = 1) meet_criteria(data, allow_class = "data.frame", contains_column_class = "sir") meet_criteria(translate_ab, allow_class = c("character", "logical"), has_length = 1, allow_NA = TRUE) language <- validate_language(language) meet_criteria(minimum, allow_class = c("numeric", "integer"), has_length = 1, is_positive_or_zero = TRUE, is_finite = TRUE) meet_criteria(as_percent, allow_class = "logical", has_length = 1) meet_criteria(combine_SI, allow_class = "logical", has_length = 1) meet_criteria(confidence_level, allow_class = "numeric", has_length = 1) translate_ab <- get_translate_ab(translate_ab) data.bak <- data # select only groups and antibiotics if (is_null_or_grouped_tbl(data)) { data_has_groups <- TRUE groups <- get_group_names(data) data <- data[, c(groups, colnames(data)[vapply(FUN.VALUE = logical(1), data, is.sir)]), drop = FALSE] } else { data_has_groups <- FALSE data <- data[, colnames(data)[vapply(FUN.VALUE = logical(1), data, is.sir)], drop = FALSE] } data <- as.data.frame(data, stringsAsFactors = FALSE) if (isTRUE(combine_SI)) { for (i in seq_len(ncol(data))) { if (is.sir(data[, i, drop = TRUE])) { data[, i] <- as.character(data[, i, drop = TRUE]) data[, i] <- gsub("(I|S)", "SI", data[, i, drop = TRUE]) } } } sum_it <- function(.data) { out <- data.frame( antibiotic = character(0), interpretation = character(0), value = double(0), ci_min = double(0), ci_max = double(0), isolates = integer(0), stringsAsFactors = FALSE ) if (data_has_groups) { group_values <- unique(.data[, which(colnames(.data) %in% groups), drop = FALSE]) rownames(group_values) <- NULL .data <- .data[, which(!colnames(.data) %in% groups), drop = FALSE] } for (i in seq_len(ncol(.data))) { values <- .data[, i, drop = TRUE] if (isTRUE(combine_SI)) { values <- factor(values, levels = c("SI", "R"), ordered = TRUE) } else { values <- factor(values, levels = c("S", "I", "R"), ordered = TRUE) } col_results <- as.data.frame(as.matrix(table(values)), stringsAsFactors = FALSE) col_results$interpretation <- rownames(col_results) col_results$isolates <- col_results[, 1, drop = TRUE] if (NROW(col_results) > 0 && sum(col_results$isolates, na.rm = TRUE) > 0) { if (sum(col_results$isolates, na.rm = TRUE) >= minimum) { col_results$value <- col_results$isolates / sum(col_results$isolates, na.rm = TRUE) ci <- lapply( col_results$isolates, function(x) { stats::binom.test( x = x, n = sum(col_results$isolates, na.rm = TRUE), conf.level = confidence_level )$conf.int } ) col_results$ci_min <- vapply(FUN.VALUE = double(1), ci, `[`, 1) col_results$ci_max <- vapply(FUN.VALUE = double(1), ci, `[`, 2) } else { col_results$value <- rep(NA_real_, NROW(col_results)) # confidence intervals also to NA col_results$ci_min <- col_results$value col_results$ci_max <- col_results$value } out_new <- data.frame( antibiotic = ifelse(isFALSE(translate_ab), colnames(.data)[i], ab_property(colnames(.data)[i], property = translate_ab, language = language) ), interpretation = col_results$interpretation, value = col_results$value, ci_min = col_results$ci_min, ci_max = col_results$ci_max, isolates = col_results$isolates, stringsAsFactors = FALSE ) if (data_has_groups) { if (nrow(group_values) < nrow(out_new)) { # repeat group_values for the number of rows in out_new repeated <- rep(seq_len(nrow(group_values)), each = nrow(out_new) / nrow(group_values) ) group_values <- group_values[repeated, , drop = FALSE] } out_new <- cbind(group_values, out_new) } out <- pm_bind_rows(out, out_new) } } out } # based on pm_apply_grouped_function apply_group <- function(.data, fn, groups, drop = FALSE, ...) { grouped <- pm_split_into_groups(.data, groups, drop) res <- do.call(pm_bind_rows, unname(lapply(grouped, fn, ...))) if (any(groups %in% colnames(res))) { class(res) <- c("grouped_data", class(res)) res <- pm_set_groups(res, groups[groups %in% colnames(res)]) } res } if (data_has_groups) { out <- apply_group(data, "sum_it", groups) } else { out <- sum_it(data) } # apply factors for right sorting in interpretation if (isTRUE(combine_SI)) { out$interpretation <- factor(out$interpretation, levels = c("SI", "R"), ordered = TRUE) } else { # don't use as.sir() here, as it would add the class 'sir' and we would like # the same data structure as output, regardless of input out$interpretation <- factor(out$interpretation, levels = c("S", "I", "R"), ordered = TRUE) } if (data_has_groups) { # ordering by the groups and two more: "antibiotic" and "interpretation" out <- pm_ungroup(out[do.call("order", out[, seq_len(length(groups) + 2), drop = FALSE]), , drop = FALSE]) } else { out <- out[order(out$antibiotic, out$interpretation), , drop = FALSE] } if (type == "proportion") { # remove number of isolates out <- subset(out, select = -c(isolates)) } else if (type == "count") { # set value to be number of isolates out$value <- out$isolates # remove redundant columns out <- subset(out, select = -c(ci_min, ci_max, isolates)) } rownames(out) <- NULL out <- as_original_data_class(out, class(data.bak)) # will remove tibble groups structure(out, class = c("sir_df", "rsi_df", class(out))) }