<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta charset="utf-8" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />

<meta name="viewport" content="width=device-width, initial-scale=1">

<meta name="author" content="Matthijs S. Berends" />


<title>Creating Frequency Tables</title>



<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
div.sourceCode { overflow-x: auto; }
table.sourceCode, tr.sourceCode, td.lineNumbers, td.sourceCode {
  margin: 0; padding: 0; vertical-align: baseline; border: none; }
table.sourceCode { width: 100%; line-height: 100%; }
td.lineNumbers { text-align: right; padding-right: 4px; padding-left: 4px; color: #aaaaaa; border-right: 1px solid #aaaaaa; }
td.sourceCode { padding-left: 5px; }
code > span.kw { color: #007020; font-weight: bold; } /* Keyword */
code > span.dt { color: #902000; } /* DataType */
code > span.dv { color: #40a070; } /* DecVal */
code > span.bn { color: #40a070; } /* BaseN */
code > span.fl { color: #40a070; } /* Float */
code > span.ch { color: #4070a0; } /* Char */
code > span.st { color: #4070a0; } /* String */
code > span.co { color: #60a0b0; font-style: italic; } /* Comment */
code > span.ot { color: #007020; } /* Other */
code > span.al { color: #ff0000; font-weight: bold; } /* Alert */
code > span.fu { color: #06287e; } /* Function */
code > span.er { color: #ff0000; font-weight: bold; } /* Error */
code > span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
code > span.cn { color: #880000; } /* Constant */
code > span.sc { color: #4070a0; } /* SpecialChar */
code > span.vs { color: #4070a0; } /* VerbatimString */
code > span.ss { color: #bb6688; } /* SpecialString */
code > span.im { } /* Import */
code > span.va { color: #19177c; } /* Variable */
code > span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code > span.op { color: #666666; } /* Operator */
code > span.bu { } /* BuiltIn */
code > span.ex { } /* Extension */
code > span.pp { color: #bc7a00; } /* Preprocessor */
code > span.at { color: #7d9029; } /* Attribute */
code > span.do { color: #ba2121; font-style: italic; } /* Documentation */
code > span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code > span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code > span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
</style>



<link href="data:text/css;charset=utf-8,body%20%7B%0Abackground%2Dcolor%3A%20%23fff%3B%0Amargin%3A%201em%20auto%3B%0Amax%2Dwidth%3A%20700px%3B%0Aoverflow%3A%20visible%3B%0Apadding%2Dleft%3A%202em%3B%0Apadding%2Dright%3A%202em%3B%0Afont%2Dfamily%3A%20%22Open%20Sans%22%2C%20%22Helvetica%20Neue%22%2C%20Helvetica%2C%20Arial%2C%20sans%2Dserif%3B%0Afont%2Dsize%3A%2014px%3B%0Aline%2Dheight%3A%201%2E35%3B%0A%7D%0A%23header%20%7B%0Atext%2Dalign%3A%20center%3B%0A%7D%0A%23TOC%20%7B%0Aclear%3A%20both%3B%0Amargin%3A%200%200%2010px%2010px%3B%0Apadding%3A%204px%3B%0Awidth%3A%20400px%3B%0Aborder%3A%201px%20solid%20%23CCCCCC%3B%0Aborder%2Dradius%3A%205px%3B%0Abackground%2Dcolor%3A%20%23f6f6f6%3B%0Afont%2Dsize%3A%2013px%3B%0Aline%2Dheight%3A%201%2E3%3B%0A%7D%0A%23TOC%20%2Etoctitle%20%7B%0Afont%2Dweight%3A%20bold%3B%0Afont%2Dsize%3A%2015px%3B%0Amargin%2Dleft%3A%205px%3B%0A%7D%0A%23TOC%20ul%20%7B%0Apadding%2Dleft%3A%2040px%3B%0Amargin%2Dleft%3A%20%2D1%2E5em%3B%0Amargin%2Dtop%3A%205px%3B%0Amargin%2Dbottom%3A%205px%3B%0A%7D%0A%23TOC%20ul%20ul%20%7B%0Amargin%2Dleft%3A%20%2D2em%3B%0A%7D%0A%23TOC%20li%20%7B%0Aline%2Dheight%3A%2016px%3B%0A%7D%0Atable%20%7B%0Amargin%3A%201em%20auto%3B%0Aborder%2Dwidth%3A%201px%3B%0Aborder%2Dcolor%3A%20%23DDDDDD%3B%0Aborder%2Dstyle%3A%20outset%3B%0Aborder%2Dcollapse%3A%20collapse%3B%0A%7D%0Atable%20th%20%7B%0Aborder%2Dwidth%3A%202px%3B%0Apadding%3A%205px%3B%0Aborder%2Dstyle%3A%20inset%3B%0A%7D%0Atable%20td%20%7B%0Aborder%2Dwidth%3A%201px%3B%0Aborder%2Dstyle%3A%20inset%3B%0Aline%2Dheight%3A%2018px%3B%0Apadding%3A%205px%205px%3B%0A%7D%0Atable%2C%20table%20th%2C%20table%20td%20%7B%0Aborder%2Dleft%2Dstyle%3A%20none%3B%0Aborder%2Dright%2Dstyle%3A%20none%3B%0A%7D%0Atable%20thead%2C%20table%20tr%2Eeven%20%7B%0Abackground%2Dcolor%3A%20%23f7f7f7%3B%0A%7D%0Ap%20%7B%0Amargin%3A%200%2E5em%200%3B%0A%7D%0Ablockquote%20%7B%0Abackground%2Dcolor%3A%20%23f6f6f6%3B%0Apadding%3A%200%2E25em%200%2E75em%3B%0A%7D%0Ahr%20%7B%0Aborder%2Dstyle%3A%20solid%3B%0Aborder%3A%20none%3B%0Aborder%2Dtop%3A%201px%20solid%20%23777%3B%0Amargin%3A%2028px%200%3B%0A%7D%0Adl%20%7B%0Amargin%2Dleft%3A%200%3B%0A%7D%0Adl%20dd%20%7B%0Amargin%2Dbottom%3A%2013px%3B%0Amargin%2Dleft%3A%2013px%3B%0A%7D%0Adl%20dt%20%7B%0Afont%2Dweight%3A%20bold%3B%0A%7D%0Aul%20%7B%0Amargin%2Dtop%3A%200%3B%0A%7D%0Aul%20li%20%7B%0Alist%2Dstyle%3A%20circle%20outside%3B%0A%7D%0Aul%20ul%20%7B%0Amargin%2Dbottom%3A%200%3B%0A%7D%0Apre%2C%20code%20%7B%0Abackground%2Dcolor%3A%20%23f7f7f7%3B%0Aborder%2Dradius%3A%203px%3B%0Acolor%3A%20%23333%3B%0Awhite%2Dspace%3A%20pre%2Dwrap%3B%20%0A%7D%0Apre%20%7B%0Aborder%2Dradius%3A%203px%3B%0Amargin%3A%205px%200px%2010px%200px%3B%0Apadding%3A%2010px%3B%0A%7D%0Apre%3Anot%28%5Bclass%5D%29%20%7B%0Abackground%2Dcolor%3A%20%23f7f7f7%3B%0A%7D%0Acode%20%7B%0Afont%2Dfamily%3A%20Consolas%2C%20Monaco%2C%20%27Courier%20New%27%2C%20monospace%3B%0Afont%2Dsize%3A%2085%25%3B%0A%7D%0Ap%20%3E%20code%2C%20li%20%3E%20code%20%7B%0Apadding%3A%202px%200px%3B%0A%7D%0Adiv%2Efigure%20%7B%0Atext%2Dalign%3A%20center%3B%0A%7D%0Aimg%20%7B%0Abackground%2Dcolor%3A%20%23FFFFFF%3B%0Apadding%3A%202px%3B%0Aborder%3A%201px%20solid%20%23DDDDDD%3B%0Aborder%2Dradius%3A%203px%3B%0Aborder%3A%201px%20solid%20%23CCCCCC%3B%0Amargin%3A%200%205px%3B%0A%7D%0Ah1%20%7B%0Amargin%2Dtop%3A%200%3B%0Afont%2Dsize%3A%2035px%3B%0Aline%2Dheight%3A%2040px%3B%0A%7D%0Ah2%20%7B%0Aborder%2Dbottom%3A%204px%20solid%20%23f7f7f7%3B%0Apadding%2Dtop%3A%2010px%3B%0Apadding%2Dbottom%3A%202px%3B%0Afont%2Dsize%3A%20145%25%3B%0A%7D%0Ah3%20%7B%0Aborder%2Dbottom%3A%202px%20solid%20%23f7f7f7%3B%0Apadding%2Dtop%3A%2010px%3B%0Afont%2Dsize%3A%20120%25%3B%0A%7D%0Ah4%20%7B%0Aborder%2Dbottom%3A%201px%20solid%20%23f7f7f7%3B%0Amargin%2Dleft%3A%208px%3B%0Afont%2Dsize%3A%20105%25%3B%0A%7D%0Ah5%2C%20h6%20%7B%0Aborder%2Dbottom%3A%201px%20solid%20%23ccc%3B%0Afont%2Dsize%3A%20105%25%3B%0A%7D%0Aa%20%7B%0Acolor%3A%20%230033dd%3B%0Atext%2Ddecoration%3A%20none%3B%0A%7D%0Aa%3Ahover%20%7B%0Acolor%3A%20%236666ff%3B%20%7D%0Aa%3Avisited%20%7B%0Acolor%3A%20%23800080%3B%20%7D%0Aa%3Avisited%3Ahover%20%7B%0Acolor%3A%20%23BB00BB%3B%20%7D%0Aa%5Bhref%5E%3D%22http%3A%22%5D%20%7B%0Atext%2Ddecoration%3A%20underline%3B%20%7D%0Aa%5Bhref%5E%3D%22https%3A%22%5D%20%7B%0Atext%2Ddecoration%3A%20underline%3B%20%7D%0A%0Acode%20%3E%20span%2Ekw%20%7B%20color%3A%20%23555%3B%20font%2Dweight%3A%20bold%3B%20%7D%20%0Acode%20%3E%20span%2Edt%20%7B%20color%3A%20%23902000%3B%20%7D%20%0Acode%20%3E%20span%2Edv%20%7B%20color%3A%20%2340a070%3B%20%7D%20%0Acode%20%3E%20span%2Ebn%20%7B%20color%3A%20%23d14%3B%20%7D%20%0Acode%20%3E%20span%2Efl%20%7B%20color%3A%20%23d14%3B%20%7D%20%0Acode%20%3E%20span%2Ech%20%7B%20color%3A%20%23d14%3B%20%7D%20%0Acode%20%3E%20span%2Est%20%7B%20color%3A%20%23d14%3B%20%7D%20%0Acode%20%3E%20span%2Eco%20%7B%20color%3A%20%23888888%3B%20font%2Dstyle%3A%20italic%3B%20%7D%20%0Acode%20%3E%20span%2Eot%20%7B%20color%3A%20%23007020%3B%20%7D%20%0Acode%20%3E%20span%2Eal%20%7B%20color%3A%20%23ff0000%3B%20font%2Dweight%3A%20bold%3B%20%7D%20%0Acode%20%3E%20span%2Efu%20%7B%20color%3A%20%23900%3B%20font%2Dweight%3A%20bold%3B%20%7D%20%20code%20%3E%20span%2Eer%20%7B%20color%3A%20%23a61717%3B%20background%2Dcolor%3A%20%23e3d2d2%3B%20%7D%20%0A" rel="stylesheet" type="text/css" />

</head>

<body>




<h1 class="title toc-ignore">Creating Frequency Tables</h1>
<h4 class="author"><em>Matthijs S. Berends</em></h4>


<div id="TOC">
<ul>
<li><a href="#introduction">Introduction</a></li>
<li><a href="#frequencies-of-one-variable">Frequencies of one variable</a></li>
<li><a href="#frequencies-of-more-than-one-variable">Frequencies of more than one variable</a></li>
<li><a href="#frequencies-of-numeric-values">Frequencies of numeric values</a></li>
<li><a href="#frequencies-of-factors">Frequencies of factors</a></li>
<li><a href="#frequencies-of-dates">Frequencies of dates</a></li>
<li><a href="#additional-parameters">Additional parameters</a><ul>
<li><a href="#parameter-na.rm">Parameter <code>na.rm</code></a></li>
<li><a href="#parameter-markdown">Parameter <code>markdown</code></a></li>
<li><a href="#parameter-as.data.frame">Parameter <code>as.data.frame</code></a></li>
</ul></li>
</ul>
</div>

<div id="introduction" class="section level2">
<h2>Introduction</h2>
<p>Frequency tables (or frequency distributions) are summaries of the distribution of values in a sample. With the <code>freq</code> function, you can create univariate frequency tables. Multiple variables will be pasted into one variable, so it forces a univariate distribution. We take the <code>septic_patients</code> dataset (included in this AMR package) as example.</p>
</div>
<div id="frequencies-of-one-variable" class="section level2">
<h2>Frequencies of one variable</h2>
<p>To only show and quickly review the content of one variable, you can just select this variable in various ways. Let’s say we want to get the frequencies of the <code>sex</code> variable of the <code>septic_patients</code> dataset:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="co"># # just using base R</span>
<span class="kw">freq</span>(septic_patients$sex)

<span class="co"># # using base R to select the variable and pass it on with a pipe</span>
septic_patients$sex %&gt;%<span class="st"> </span><span class="kw">freq</span>()

<span class="co"># # do it all with pipes, using the `select` function of the dplyr package</span>
septic_patients %&gt;%
<span class="st">  </span><span class="kw">select</span>(sex) %&gt;%
<span class="st">  </span><span class="kw">freq</span>()</code></pre></div>
<p>This will all lead to the following table:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">freq</span>(septic_patients$sex)
<span class="co"># Class:     character</span>
<span class="co"># Length:    2000 (of which NA: 0 = 0.0%)</span>
<span class="co"># Unique:    2</span>
<span class="co"># </span>
<span class="co"># Item    Count   Percent   Cum. Count   Cum. Percent</span>
<span class="co"># -----  ------  --------  -----------  -------------</span>
<span class="co"># M        1112     55.6%         1112          55.6%</span>
<span class="co"># F         888     44.4%         2000         100.0%</span></code></pre></div>
<p>This immediately shows the class of the variable, its length and availability (i.e. the amount of <code>NA</code>), the amount of unique values and (most importantly) that among septic patients men are more prevalent than women.</p>
</div>
<div id="frequencies-of-more-than-one-variable" class="section level2">
<h2>Frequencies of more than one variable</h2>
<p>Multiple variables will be pasted into one variable to review individual cases, keeping a univariate frequency table.</p>
<p>For illustration, we could add some more variables to the <code>septic_patients</code> dataset to learn about bacterial properties:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">my_patients &lt;-<span class="st"> </span>septic_patients %&gt;%<span class="st"> </span>
<span class="st">  </span><span class="kw">left_join_microorganisms</span>()</code></pre></div>
<p>Now all variables of the <code>microorganisms</code> dataset have been joined to the <code>septic_patients</code> dataset. The <code>microorganisms</code> dataset consists of the following variables:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">colnames</span>(microorganisms)
<span class="co">#  [1] &quot;bactid&quot;       &quot;bactsys&quot;      &quot;family&quot;       &quot;genus&quot;       </span>
<span class="co">#  [5] &quot;species&quot;      &quot;subspecies&quot;   &quot;fullname&quot;     &quot;type&quot;        </span>
<span class="co">#  [9] &quot;gramstain&quot;    &quot;aerobic&quot;      &quot;type_nl&quot;      &quot;gramstain_nl&quot;</span></code></pre></div>
<p>If we compare the dimensions between the old and new dataset, we can see that these 11 variables were added:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">dim</span>(septic_patients)
<span class="co"># [1] 2000   47</span>
<span class="kw">dim</span>(my_patients)
<span class="co"># [1] 2000   58</span></code></pre></div>
<p>So now the <code>genus</code> and <code>species</code> variables are available. A frequency table of these combined variables can be created like this:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">my_patients %&gt;%
<span class="st">  </span><span class="kw">select</span>(genus, species) %&gt;%
<span class="st">  </span><span class="kw">freq</span>()
<span class="co"># Columns:   2</span>
<span class="co"># Length:    2000 (of which NA: 0 = 0.0%)</span>
<span class="co"># Unique:    137</span>
<span class="co"># </span>
<span class="co"># Item                                 Count   Percent   Cum. Count   Cum. Percent</span>
<span class="co"># ----------------------------------  ------  --------  -----------  -------------</span>
<span class="co"># Escherichia coli                       485     24.2%          485          24.2%</span>
<span class="co"># Staphylococcus coagulase negatief      297     14.8%          782          39.1%</span>
<span class="co"># Staphylococcus aureus                  200     10.0%          982          49.1%</span>
<span class="co"># Staphylococcus epidermidis             150      7.5%         1132          56.6%</span>
<span class="co"># Streptococcus pneumoniae                97      4.9%         1229          61.5%</span>
<span class="co"># Staphylococcus hominis                  67      3.4%         1296          64.8%</span>
<span class="co"># Klebsiella pneumoniae                   65      3.2%         1361          68.0%</span>
<span class="co"># Enterococcus faecalis                   44      2.2%         1405          70.2%</span>
<span class="co"># Proteus mirabilis                       33      1.7%         1438          71.9%</span>
<span class="co"># Pseudomonas aeruginosa                  31      1.6%         1469          73.5%</span>
<span class="co"># Streptococcus pyogenes                  30      1.5%         1499          75.0%</span>
<span class="co"># Enterococcus faecium                    27      1.4%         1526          76.3%</span>
<span class="co"># Bacteroides fragilis                    26      1.3%         1552          77.6%</span>
<span class="co"># Enterobacter cloacae                    25      1.2%         1577          78.8%</span>
<span class="co"># Klebsiella oxytoca                      23      1.1%         1600          80.0%</span>
<span class="co"># ... and 122 more (n = 400; 20.0%). Use `nmax` to show more or less rows.</span></code></pre></div>
</div>
<div id="frequencies-of-numeric-values" class="section level2">
<h2>Frequencies of numeric values</h2>
<p>Frequency tables can be created of any input.</p>
<p>In case of numeric values (like integers, doubles, etc.) additional descriptive statistics will be calculated and shown into the header:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="co"># # get age distribution of unique patients</span>
septic_patients %&gt;%<span class="st"> </span>
<span class="st">  </span><span class="kw">distinct</span>(patient_id, <span class="dt">.keep_all =</span> <span class="ot">TRUE</span>) %&gt;%<span class="st"> </span>
<span class="st">  </span><span class="kw">select</span>(age) %&gt;%<span class="st"> </span>
<span class="st">  </span><span class="kw">freq</span>(<span class="dt">nmax =</span> <span class="dv">5</span>)
<span class="co"># Class:     integer</span>
<span class="co"># Length:    1920 (of which NA: 0 = 0.0%)</span>
<span class="co"># Unique:    94</span>
<span class="co">#   </span>
<span class="co"># Mean:      68</span>
<span class="co"># Std. dev.: 18 (CV: 0.27)</span>
<span class="co"># Five-Num:  0  |  61  |  72  |  80  |  101 (CQV: 0.13)</span>
<span class="co"># Outliers:  94 (unique: 26)</span>
<span class="co"># </span>
<span class="co">#  Item   Count   Percent   Cum. Count   Cum. Percent</span>
<span class="co"># -----  ------  --------  -----------  -------------</span>
<span class="co">#     0      34      1.8%           34           1.8%</span>
<span class="co">#     1       5      0.3%           39           2.0%</span>
<span class="co">#     2       5      0.3%           44           2.3%</span>
<span class="co">#     3       2      0.1%           46           2.4%</span>
<span class="co">#     4       1      0.1%           47           2.4%</span>
<span class="co"># ... and 89 more (n = 1873; 97.6%).</span></code></pre></div>
<p>So the following properties are determined, where <code>NA</code> values are always ignored:</p>
<ul>
<li><p><strong>Mean</strong></p></li>
<li><p><strong>Standard deviation</strong></p></li>
<li><p><strong>Coefficient of variation</strong> (CV), the standard deviation divided by the mean</p></li>
<li><p><strong>Five numbers of Tukey</strong> (min, Q1, median, Q3, max)</p></li>
<li><p><strong>Coefficient of quartile variation</strong> (CQV, sometimes called coefficient of dispersion), calculated as (Q3 - Q1) / (Q3 + Q1) using quantile with <code>type = 6</code> as quantile algorithm to comply with SPSS standards</p></li>
<li><p><strong>Outliers</strong> (total count and unique count)</p></li>
</ul>
<p>So for example, the above frequency table quickly shows the median age of patients being 72.</p>
</div>
<div id="frequencies-of-factors" class="section level2">
<h2>Frequencies of factors</h2>
<p>Frequencies of factors will be sorted on factor level instead of item count by default. This can be changed with the <code>sort.count</code> parameter. Frequency tables of factors always show the factor level as an additional last column.</p>
<p><code>sort.count</code> is <code>TRUE</code> by default, except for factors. Compare this default behaviour:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">septic_patients %&gt;%
<span class="st">  </span><span class="kw">select</span>(hospital_id) %&gt;%<span class="st"> </span>
<span class="st">  </span><span class="kw">freq</span>()
<span class="co"># Class:     factor</span>
<span class="co"># Length:    2000 (of which NA: 0 = 0.0%)</span>
<span class="co"># Unique:    5</span>
<span class="co"># </span>
<span class="co"># Item    Count   Percent   Cum. Count   Cum. Percent   (Factor Level)</span>
<span class="co"># -----  ------  --------  -----------  -------------  ---------------</span>
<span class="co"># A         233     11.7%          233          11.7%                1</span>
<span class="co"># B         583     29.1%          816          40.8%                2</span>
<span class="co"># C         221     11.1%         1037          51.8%                3</span>
<span class="co"># D         650     32.5%         1687          84.4%                4</span>
<span class="co"># E         313     15.7%         2000         100.0%                5</span></code></pre></div>
<p>To this, where items are now sorted on item count:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">septic_patients %&gt;%
<span class="st">  </span><span class="kw">select</span>(hospital_id) %&gt;%<span class="st"> </span>
<span class="st">  </span><span class="kw">freq</span>(<span class="dt">sort.count =</span> <span class="ot">TRUE</span>)
<span class="co"># Class:     factor</span>
<span class="co"># Length:    2000 (of which NA: 0 = 0.0%)</span>
<span class="co"># Unique:    5</span>
<span class="co"># </span>
<span class="co"># Item    Count   Percent   Cum. Count   Cum. Percent   (Factor Level)</span>
<span class="co"># -----  ------  --------  -----------  -------------  ---------------</span>
<span class="co"># D         650     32.5%          650          32.5%                4</span>
<span class="co"># B         583     29.1%         1233          61.7%                2</span>
<span class="co"># E         313     15.7%         1546          77.3%                5</span>
<span class="co"># A         233     11.7%         1779          88.9%                1</span>
<span class="co"># C         221     11.1%         2000         100.0%                3</span></code></pre></div>
<p>All classes will be printed into the header. Variables with the new <code>rsi</code> class of this AMR package are actually ordered factors and have three classes (look at <code>Class</code> in the header):</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">septic_patients %&gt;%
<span class="st">  </span><span class="kw">select</span>(amox) %&gt;%<span class="st"> </span>
<span class="st">  </span><span class="kw">freq</span>()
<span class="co"># Class:     factor &gt; ordered &gt; rsi</span>
<span class="co"># Length:    2000 (of which NA: 678 = 33.9%)</span>
<span class="co"># Unique:    3</span>
<span class="co"># </span>
<span class="co"># Item    Count   Percent   Cum. Count   Cum. Percent   (Factor Level)</span>
<span class="co"># -----  ------  --------  -----------  -------------  ---------------</span>
<span class="co"># S         561     42.4%          561          42.4%                1</span>
<span class="co"># I          49      3.7%          610          46.1%                2</span>
<span class="co"># R         712     53.9%         1322         100.0%                3</span></code></pre></div>
</div>
<div id="frequencies-of-dates" class="section level2">
<h2>Frequencies of dates</h2>
<p>Frequencies of dates will show the oldest and newest date in the data, and the amount of days between them:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">septic_patients %&gt;%
<span class="st">  </span><span class="kw">select</span>(date) %&gt;%<span class="st"> </span>
<span class="st">  </span><span class="kw">freq</span>(<span class="dt">nmax =</span> <span class="dv">5</span>)
<span class="co"># Class:     Date</span>
<span class="co"># Length:    2000 (of which NA: 0 = 0.0%)</span>
<span class="co"># Unique:    1662</span>
<span class="co"># </span>
<span class="co"># Oldest:    2 januari 2001</span>
<span class="co"># Newest:    18 oktober 2017 (+6133)</span>
<span class="co"># </span>
<span class="co"># Item          Count   Percent   Cum. Count   Cum. Percent</span>
<span class="co"># -----------  ------  --------  -----------  -------------</span>
<span class="co"># 2008-12-24        5      0.2%            5           0.2%</span>
<span class="co"># 2010-12-10        4      0.2%            9           0.4%</span>
<span class="co"># 2011-03-03        4      0.2%           13           0.6%</span>
<span class="co"># 2013-06-24        4      0.2%           17           0.8%</span>
<span class="co"># 2017-09-01        4      0.2%           21           1.1%</span>
<span class="co"># ... and 1657 more (n = 1979; 99.0%).</span></code></pre></div>
</div>
<div id="additional-parameters" class="section level2">
<h2>Additional parameters</h2>
<div id="parameter-na.rm" class="section level3">
<h3>Parameter <code>na.rm</code></h3>
<p>With the <code>na.rm</code> parameter (defaults to <code>TRUE</code>, but they will always be shown into the header), you can include <code>NA</code> values in the frequency table:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">septic_patients %&gt;%
<span class="st">  </span><span class="kw">select</span>(amox) %&gt;%<span class="st"> </span>
<span class="st">  </span><span class="kw">freq</span>(<span class="dt">na.rm =</span> <span class="ot">FALSE</span>)
<span class="co"># Class:     factor &gt; ordered &gt; rsi</span>
<span class="co"># Length:    2678 (of which NA: 678 = 25.3%)</span>
<span class="co"># Unique:    4</span>
<span class="co"># </span>
<span class="co"># Item    Count   Percent   Cum. Count   Cum. Percent   (Factor Level)</span>
<span class="co"># -----  ------  --------  -----------  -------------  ---------------</span>
<span class="co"># S         561     28.1%          561          28.1%                1</span>
<span class="co"># I          49      2.5%          610          30.5%                2</span>
<span class="co"># R         712     35.6%         1322          66.1%                3</span>
<span class="co"># &lt;NA&gt;      678     33.9%         2000         100.0%             &lt;NA&gt;</span></code></pre></div>
</div>
<div id="parameter-markdown" class="section level3">
<h3>Parameter <code>markdown</code></h3>
<p>The <code>markdown</code> parameter can be used in reports created with R Markdown. This will always print all rows:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">septic_patients %&gt;%
<span class="st">  </span><span class="kw">select</span>(hospital_id) %&gt;%<span class="st"> </span>
<span class="st">  </span><span class="kw">freq</span>(<span class="dt">markdown =</span> <span class="ot">TRUE</span>)
<span class="co"># </span>
<span class="co"># Class:     factor</span>
<span class="co"># </span>
<span class="co"># Length:    2000 (of which NA: 0 = 0.0%)</span>
<span class="co"># </span>
<span class="co"># Unique:    5</span>
<span class="co"># </span>
<span class="co"># |Item | Count| Percent| Cum. Count| Cum. Percent| (Factor Level)|</span>
<span class="co"># |:----|-----:|-------:|----------:|------------:|--------------:|</span>
<span class="co"># |A    |   233|   11.7%|        233|        11.7%|              1|</span>
<span class="co"># |B    |   583|   29.1%|        816|        40.8%|              2|</span>
<span class="co"># |C    |   221|   11.1%|       1037|        51.8%|              3|</span>
<span class="co"># |D    |   650|   32.5%|       1687|        84.4%|              4|</span>
<span class="co"># |E    |   313|   15.7%|       2000|       100.0%|              5|</span></code></pre></div>
</div>
<div id="parameter-as.data.frame" class="section level3">
<h3>Parameter <code>as.data.frame</code></h3>
<p>With the <code>as.data.frame</code> parameter you can assign the frequency table to an object, or just print it as a <code>data.frame</code> to the console:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">my_df &lt;-<span class="st"> </span>septic_patients %&gt;%
<span class="st">  </span><span class="kw">select</span>(hospital_id) %&gt;%<span class="st"> </span>
<span class="st">  </span><span class="kw">freq</span>(<span class="dt">as.data.frame =</span> <span class="ot">TRUE</span>)

my_df
<span class="co">#   item count percent cum_count cum_percent factor_level</span>
<span class="co"># 1    A   233  0.1165       233      0.1165            1</span>
<span class="co"># 2    B   583  0.2915       816      0.4080            2</span>
<span class="co"># 3    C   221  0.1105      1037      0.5185            3</span>
<span class="co"># 4    D   650  0.3250      1687      0.8435            4</span>
<span class="co"># 5    E   313  0.1565      2000      1.0000            5</span>

<span class="kw">class</span>(my_df)
<span class="co"># [1] &quot;data.frame&quot;</span></code></pre></div>
<hr />
<p>AMR, (c) 2018, <a href="https://github.com/msberends/AMR" class="uri">https://github.com/msberends/AMR</a></p>
<p>Licensed under the <a href="https://github.com/msberends/AMR/blob/master/LICENSE">GNU General Public License v2.0</a>.</p>
</div>
</div>



<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
  (function () {
    var script = document.createElement("script");
    script.type = "text/javascript";
    script.src  = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
    document.getElementsByTagName("head")[0].appendChild(script);
  })();
</script>

</body>
</html>