resistance_predict.Rd
Create a prediction model to predict antimicrobial resistance for the next years on statistical solid ground. Standard errors (SE) will be returned as columns se_min
and se_max
. See Examples for a real live example.
resistance_predict(tbl, col_ab, col_date = NULL, year_min = NULL, year_max = NULL, year_every = 1, minimum = 30, model = "binomial", I_as_R = TRUE, preserve_measurements = TRUE, info = TRUE) rsi_predict(tbl, col_ab, col_date = NULL, year_min = NULL, year_max = NULL, year_every = 1, minimum = 30, model = "binomial", I_as_R = TRUE, preserve_measurements = TRUE, info = TRUE) # S3 method for resistance_predict plot(x, main = paste("Resistance prediction of", attributes(x)$ab), ...) ggplot_rsi_predict(x, main = paste("Resistance prediction of", attributes(x)$ab), ...)
tbl | a |
---|---|
col_ab | column name of |
col_date | column name of the date, will be used to calculate years if this column doesn't consist of years already, defaults to the first column of with a date class |
year_min | lowest year to use in the prediction model, dafaults to the lowest year in |
year_max | highest year to use in the prediction model, defaults to 10 years after today |
year_every | unit of sequence between lowest year found in the data and |
minimum | minimal amount of available isolates per year to include. Years containing less observations will be estimated by the model. |
model | the statistical model of choice. Valid values are |
I_as_R | a logical to indicate whether values |
preserve_measurements | a logical to indicate whether predictions of years that are actually available in the data should be overwritten by the original data. The standard errors of those years will be |
info | a logical to indicate whether textual analysis should be printed with the name and |
x | the coordinates of points in the plot. Alternatively, a
single plotting structure, function or any R object with a
|
main | title of the plot |
... | parameters passed on to the |
data.frame
with extra class "resistance_predict"
with columns:
year
value
, the same as estimated
when preserve_measurements = FALSE
, and a combination of observed
and estimated
otherwise
se_min
, the lower bound of the standard error with a minimum of 0
(so the standard error will never go below 0%)
se_max
the upper bound of the standard error with a maximum of 1
(so the standard error will never go above 100%)
observations
, the total number of available observations in that year, i.e. S + I + R
observed
, the original observed resistant percentages
estimated
, the estimated resistant percentages, calculated by the model
On our website https://msberends.gitlab.io/AMR you can find a comprehensive tutorial about how to conduct AMR analysis, the complete documentation of all functions (which reads a lot easier than here in R) and an example analysis using WHONET data.
# NOT RUN { x <- resistance_predict(septic_patients, col_ab = "amox", year_min = 2010) plot(x) ggplot_rsi_predict(x) # use dplyr so you can actually read it: library(dplyr) x <- septic_patients %>% filter_first_isolate() %>% filter(mo_genus(mo) == "Staphylococcus") %>% resistance_predict("peni") plot(x) # create nice plots with ggplot yourself if (!require(ggplot2)) { data <- septic_patients %>% filter(mo == as.mo("E. coli")) %>% resistance_predict(col_ab = "amox", col_date = "date", info = FALSE, minimum = 15) ggplot(data, aes(x = year)) + geom_col(aes(y = value), fill = "grey75") + geom_errorbar(aes(ymin = se_min, ymax = se_max), colour = "grey50") + scale_y_continuous(limits = c(0, 1), breaks = seq(0, 1, 0.1), labels = paste0(seq(0, 100, 10), "%")) + labs(title = expression(paste("Forecast of amoxicillin resistance in ", italic("E. coli"))), y = "%IR", x = "Year") + theme_minimal(base_size = 13) } # }